Materials discovery: Understanding polycrystals from large-scale electron patterns

Ruoqian Liu, Ankit Agrawal, Wei Keng Liao, Alok Choudhary, Marc De Graef

Research output: Chapter in Book/Report/Conference proceedingConference contribution

26 Scopus citations

Abstract

This paper explores the idea of modeling a large image data collection of polycrystal electron patterns, in order to detect insights in understanding materials discovery. There is an emerging interest in applying big data processing, management and modeling methods to scientific images, which often come in a form and with patterns only interpretable to domain experts. While large-scale machine learning approaches have demonstrated certain superiority in analyzing, summarizing, and providing an understandable route to data types like natural images, speeches and texts, scientific images is still a relatively unexplored area. Deep convolutional neural networks, despite their recent triumph in natural image understanding, are still rarely seen adapted to experimental microscopic images, especially in a large scale. To the best of our knowledge, we present the first deep learning solution towards a scientific image indexing problem using a collection of over 300K microscopic images. The result obtained is 54% better than a dictionary lookup method which is state-of-the-art in the materials science society.

Original languageEnglish (US)
Title of host publicationProceedings - 2016 IEEE International Conference on Big Data, Big Data 2016
EditorsRonay Ak, George Karypis, Yinglong Xia, Xiaohua Tony Hu, Philip S. Yu, James Joshi, Lyle Ungar, Ling Liu, Aki-Hiro Sato, Toyotaro Suzumura, Sudarsan Rachuri, Rama Govindaraju, Weijia Xu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2261-2269
Number of pages9
ISBN (Electronic)9781467390040
DOIs
StatePublished - 2016
Event4th IEEE International Conference on Big Data, Big Data 2016 - Washington, United States
Duration: Dec 5 2016Dec 8 2016

Publication series

NameProceedings - 2016 IEEE International Conference on Big Data, Big Data 2016

Other

Other4th IEEE International Conference on Big Data, Big Data 2016
Country/TerritoryUnited States
CityWashington
Period12/5/1612/8/16

Keywords

  • Deep learning
  • EBSD
  • convolutional neural networks
  • electronic images
  • materials design
  • materials discovery

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Materials discovery: Understanding polycrystals from large-scale electron patterns'. Together they form a unique fingerprint.

Cite this