Matrix methods for estimating odds ratios with misclassified exposure data: Extensions and comparisons

Mary J. Morrissey*, Donna Spiegelman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

Misclassification of exposure variables is a common problem in epidemiologic studies. This paper compares the matrix method (Barron, 1977, Biometrics 33, 414-418; Greenland, 1988a, Statistics in Medicine 7, 745-757) and the inverse matrix method (Marshall, 1990, Journal of Clinical Epidemiology 43, 941-947) to the maximum likelihood estimator (MLE) that corrects the odds ratio for bias due to a misclassified binary covariate. Under the assumption of differential misclassification, the inverse matrix method is always more efficient than the matrix method; however, the efficiency depends strongly on the values of the sensitivity, specificity, baseline probability of exposure, the odds ratio, case-control ratio, and validation sampling fraction. In a study on sudden infant death syndrome (SIDS), an estimate of the asymptotic relative efficiency (ARE) of the inverse matrix estimate was 0.99, while the matrix method's ARE was 0.19. Under nondifferential misclassification, neither the matrix nor the inverse matrix estimator is uniformly more efficient than the other; the efficiencies again depend on the underlying parameters. In the SIDS data, the MLE was more efficient than the matrix method (ARE = 0.39). In a study investigating the effect of vitamin A intake on the incidence of breast cancer, the MLE was more efficient than the matrix method (ARE = 0.75).

Original languageEnglish (US)
Pages (from-to)338-344
Number of pages7
JournalBiometrics
Volume55
Issue number2
DOIs
StatePublished - Jun 1999

Keywords

  • Epidemiologic methods
  • Measurement error
  • Odds ratio

ASJC Scopus subject areas

  • Statistics and Probability
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Matrix methods for estimating odds ratios with misclassified exposure data: Extensions and comparisons'. Together they form a unique fingerprint.

Cite this