TY - JOUR
T1 - MAXIMAL SUBGROUPS OF SL(n, ℤ)
AU - Gelander, T.
AU - Meiri, C.
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media New York.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - We establish the existence of maximal subgroups of various different natures in SL(n, ℤ). In particular, we prove that there are 2ϰ0 maximal subgroups, we provide a maximal subgroup whose action on the projective space has no dense orbits, and we produce a faithful primitive permutation representation of PSL(n, ℤ) which is not 2-transitive.
AB - We establish the existence of maximal subgroups of various different natures in SL(n, ℤ). In particular, we prove that there are 2ϰ0 maximal subgroups, we provide a maximal subgroup whose action on the projective space has no dense orbits, and we produce a faithful primitive permutation representation of PSL(n, ℤ) which is not 2-transitive.
UR - http://www.scopus.com/inward/record.url?scp=84966709037&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84966709037&partnerID=8YFLogxK
U2 - 10.1007/s00031-016-9392-7
DO - 10.1007/s00031-016-9392-7
M3 - Article
AN - SCOPUS:84966709037
SN - 1083-4362
VL - 21
SP - 1063
EP - 1078
JO - Transformation Groups
JF - Transformation Groups
IS - 4
ER -