Abstract
This paper introduces a class of robust estimators of the parameters of a stochastic utility function. Existing maximum likelihood and regression estimation methods require the assumption of a particular distributional family for the random component of utility. In contrast, estimators of the 'maximum score' class require only weak distributional assumptions for consistency. Following presentation and proof of the basic consistency theorem, additional results are given. An algorithm for achieving maximum score estimates and some small sample Monte Carlo tests are also described.
Original language | English (US) |
---|---|
Pages (from-to) | 205-228 |
Number of pages | 24 |
Journal | Journal of Econometrics |
Volume | 3 |
Issue number | 3 |
DOIs | |
State | Published - Jan 1 1975 |
ASJC Scopus subject areas
- Economics and Econometrics