Abstract
Objective. The purpose of this study was to demonstrate the feasibility of using hyperpolarized carbon-13 (13C) metabolic imaging with [1-13C]-labeled pyruvate for evaluating real-time in vivo metabolism of orthotopic diffuse intrinsic pontine glioma (DIPG) xenografts. Materials and Methods. 3D 13C magnetic resonance spectroscopic imaging (MRSI) data were acquired on a 3T scanner from 8 rats that had been implanted with human-derived DIPG cells in the brainstem and 5 healthy controls, following injection of 2.5 mL (100 mM) hyperpolarized [1-13C]-pyruvate. Results. Anatomical images from DIPG-bearing rats characteristically exhibited T2-hyperintensity throughout the cerebellum and pons that was not accompanied by contrast enhancement. Evaluation of real-time in vivo 13C spectroscopic data revealed ratios of lactate-to-pyruvate (p<0.002), lactate-to-total carbon (p<0.002), and normalized lactate (p<0.002) that were significantly higher in T2 lesions harboring tumor relative to corresponding values of healthy normal brain. Elevated levels of lactate in lesions demonstrated a distinct metabolic profile that was associated with infiltrative, viable tumor recapitulating the histopathology of pediatric DIPG. Conclusions. Results from this study characterized pyruvate and lactate metabolism in orthotopic DIPG xenografts and suggest that hyperpolarized 13C MRSI may serve as a noninvasive imaging technique for in vivo monitoring of biochemical processes in patients with DIPG.
Original language | English (US) |
---|---|
Article number | 3215658 |
Journal | Contrast Media and Molecular Imaging |
Volume | 2018 |
DOIs | |
State | Published - 2018 |
Funding
Ilwoo Park was supported by an NCI training grant in translational brain tumor research (T32 CA151022), a discovery grant from the American Brain Tumor Association, and Jacobsen Fund from Research Evaluation and Allocation Committee (REAC). Support for the research studies came from National Institutes of Health (NIH) (Grant nos. R01EB013427 and P41EB013598), National Research Foundation (NRF) of Korea grant, funded by Ministry of Science and ICT (Grant no. 2017R1C1B5018396) and grants from Chonnam National University Hospital Biomedical Research Institute (CRI18019-1 and CRI18094-2). ,e authors gratefully acknowledge the guidance of Dr. Sarah J. Nelson in accomplishing this study.
ASJC Scopus subject areas
- Radiology Nuclear Medicine and imaging