Measuring Z′ couplings at the CERN LHC

Frank Petriello*, Seth Quackenbush

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

83 Scopus citations

Abstract

We study the properties of potential new Z′ gauge bosons produced through the Drell-Yan mechanism at the Large Hadron Collider (LHC). Our analysis is performed using a fully differential next-to-leading-order QCD calculation with spin correlations, interference effects, and experimental acceptances included. We examine the distinguishability of different models and the feasibility of extracting general coupling information with statistical, residual scale, and current parton distribution function error estimates included. We extend a previous parametrization of Z′ couplings to include parity-violating coupling combinations and introduce a convenient technique for simulating new gauge bosons on-peak using the concept of basis models. We illustrate our procedure using several example Z′ models. We find that one can extract reliably four combinations of generation-independent quark and lepton couplings in our analysis. For a Z′ mass of 1.5 TeV, one can determine coupling information very well assuming 100fb-1 of integrated luminosity, and a precise measurement becomes possible with 1ab-1 at the super-LHC (SLHC). For a 3 TeV mass, a reasonable determination requires the SLHC.

Original languageEnglish (US)
Article number115004
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume77
Issue number11
DOIs
StatePublished - Jun 9 2008

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Measuring Z′ couplings at the CERN LHC'. Together they form a unique fingerprint.

Cite this