Mechanics of carbon nanotubes

Dong Qian, Gregory J Wagner, Wing K Liu, Min Feng Yu, Rodney S. Ruoff

Research output: Chapter in Book/Report/Conference proceedingChapter

3 Scopus citations

Abstract

Soon after the discovery of carbon nanotubes, it was realized that the theoretically predicted mechanical properties of these interesting structures - including high strength, high stiffness, low density, and structural perfection - could make them ideal for a wealth of technological applications. The experimental verification, and in some cases refutation, of these predictions, along with a number of computer simulation methods applied to their modeling, has led over the past decade to an improved but by no means complete understanding of the mechanics of carbon nanotubes. We review the theoretical predictions and discuss the experimental techniques that are most often used for the challenging tasks of visualizing and manipulating these tiny structures. We also outline the computational approaches that have been taken, including ab initio quantum mechanical simulations, classical molecular dynamics, and continuum models. The development of multiscale and multiphysics models and simulation tools naturally arises as a result of the link between basic scientific research and engineering application; while this issue is still under intensive study, we present here some of the approaches to this topic. Our concentration throughout is on the exploration of mechanical properties such as Young’s modulus, bending stiffness, buckling criteria, and tensile and compressive strengths. Finally, we discuss several examples of exciting applications that take advantage of these properties, including nanoropes, filled nanotubes, nanoelectromechanical systems, nanosensors, and nanotube-reinforced polymers.

Original languageEnglish (US)
Title of host publicationHandbook of Nanoscience, Engineering, and Technology
PublisherCRC Press
Pages19-1-19-63
ISBN (Electronic)9781420040623
ISBN (Print)0849312000, 9781420007848
StatePublished - Jan 1 2002

ASJC Scopus subject areas

  • General Engineering
  • General Chemistry
  • General Materials Science

Fingerprint

Dive into the research topics of 'Mechanics of carbon nanotubes'. Together they form a unique fingerprint.

Cite this