Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates

Chung Hang J. Choi, Liangliang Hao, Suguna P. Narayan, Evelyn Auyeung, Chad A. Mirkin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

475 Scopus citations

Abstract

Intracellular delivery of nucleic acids as gene regulation agents typically requires the use of cationic carriers or viral vectors, yet issues related to cellular toxicity or immune responses hamper their attractiveness as therapeutic candidates. The discovery that spherical nucleic acids (SNAs), polyanionic structures comprised of densely packed, highly oriented oligonucleotides covalently attached to the surface of nanoparticles, can effectively enter more than 50 different cell types presents a potential strategy for overcoming the limitations of conventional transfection agents. Unfortunately, little is known about the mechanism of endocytosis of SNAs, including the pathway of entry and specific proteins involved. Here, we demonstrate that the rapid cellular uptake kinetics and intracellular transport of SNAs stem from the arrangement of oligonucleotides into a 3D architecture, which supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. These results reinforce the notion that SNAs can serve as therapeutic payloads and targeting structures to engage biological pathways not readily accessible with linear oligonucleotides.

Original languageEnglish (US)
Pages (from-to)7625-7630
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume110
Issue number19
DOIs
StatePublished - May 7 2013

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates'. Together they form a unique fingerprint.

Cite this