TY - JOUR
T1 - Mechanism of energy transfer from carotenoids to bacteriochlorophyll
T2 - Light-harvesting by carotenoids having different extents of π-electron conjugation incorporated into the B850 antenna complex from the carotenoidless bacterium Rhodobacter sphaeroides R-26.1
AU - Desamero, Ruel Z.B.
AU - Chynwat, Veeradej
AU - Van Der Hoef, Ineke
AU - Jansen, Frans Jos
AU - Lugtenburg, Johan
AU - Gosztola, David
AU - Wasielewski, Michael R.
AU - Cua, Agnes
AU - Bocian, David F.
AU - Frank, Harry A.
PY - 1998/10/15
Y1 - 1998/10/15
N2 - Spheroidene and a series of spheroidene analogues with extents of π-electron conjugation ranging from 7 to 13 carbon-carbon double bonds were incorporated into the B850 light-harvesting complex of Rhodobacter sphaeroides R-26.1. The structures and spectroscopic properties of the carotenoids and the dynamics of energy transfer from the carotenoid to bacteriochlorophyll (BChl) in the B850 complex were studied by using steady-state absorption, fluorescence, fluorescence excitation, resonance Raman, and time-resolved absorption spectroscopy. The spheroidene analogues used in this study were 5′,6′-dihydro-7′,8′-didehydrospheroidene, 7′,8′-didehydrospheroidene, and 1′,2′-dihydro-3′,4′,7′,8′- tetradehydrospheroidene. These data, taken together with results from 3,4,7,8-tetrahydrospheroidene, 3,4,5,6-tetrahydrospheroidene, 3,4-dihydrospheroidene, and spheroidene already published (Frank, H. A.; Farhoosh, R.; Aldema, M. L.; DeCoster, B.; Christensen, R. L.; Gebhard, R.; Lugtenburg, J. Photochem. Photobiol. 1993, 57, 49. Farhoosh, R.; Chynwat, V.; Gebhard, R.; Lugtenburg, J.; Frank, H. A. Photosynth. Res. 1994, 42, 157), provide a systematic series of molecules for understanding the molecular features that determine the mechanism of energy transfer from carotenoids to BChl in photosynthetic bacterial light-harvesting complexes. The data support the hypothesis that only carotenoids having 10 or less carbon-carbon double bonds transfer energy via their 21Ag (S1) states to BChl to any significant degree. Energy transfer via the 11Bu (S2) state of the carotenoid becomes more important than the S1 route as the number of conjugated carbon-carbon double bonds increases. The results also suggest that the S2 state associated with the Qx transition of the B850 BChl is the most likely acceptor state for energy transfer originating from both the 21Ag (S1) and 11Bu (S2) states of all carotenoids.
AB - Spheroidene and a series of spheroidene analogues with extents of π-electron conjugation ranging from 7 to 13 carbon-carbon double bonds were incorporated into the B850 light-harvesting complex of Rhodobacter sphaeroides R-26.1. The structures and spectroscopic properties of the carotenoids and the dynamics of energy transfer from the carotenoid to bacteriochlorophyll (BChl) in the B850 complex were studied by using steady-state absorption, fluorescence, fluorescence excitation, resonance Raman, and time-resolved absorption spectroscopy. The spheroidene analogues used in this study were 5′,6′-dihydro-7′,8′-didehydrospheroidene, 7′,8′-didehydrospheroidene, and 1′,2′-dihydro-3′,4′,7′,8′- tetradehydrospheroidene. These data, taken together with results from 3,4,7,8-tetrahydrospheroidene, 3,4,5,6-tetrahydrospheroidene, 3,4-dihydrospheroidene, and spheroidene already published (Frank, H. A.; Farhoosh, R.; Aldema, M. L.; DeCoster, B.; Christensen, R. L.; Gebhard, R.; Lugtenburg, J. Photochem. Photobiol. 1993, 57, 49. Farhoosh, R.; Chynwat, V.; Gebhard, R.; Lugtenburg, J.; Frank, H. A. Photosynth. Res. 1994, 42, 157), provide a systematic series of molecules for understanding the molecular features that determine the mechanism of energy transfer from carotenoids to BChl in photosynthetic bacterial light-harvesting complexes. The data support the hypothesis that only carotenoids having 10 or less carbon-carbon double bonds transfer energy via their 21Ag (S1) states to BChl to any significant degree. Energy transfer via the 11Bu (S2) state of the carotenoid becomes more important than the S1 route as the number of conjugated carbon-carbon double bonds increases. The results also suggest that the S2 state associated with the Qx transition of the B850 BChl is the most likely acceptor state for energy transfer originating from both the 21Ag (S1) and 11Bu (S2) states of all carotenoids.
UR - http://www.scopus.com/inward/record.url?scp=11744291937&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=11744291937&partnerID=8YFLogxK
U2 - 10.1021/jp980911j
DO - 10.1021/jp980911j
M3 - Article
AN - SCOPUS:11744291937
SN - 1520-6106
VL - 102
SP - 8151
EP - 8162
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 42
ER -