TY - JOUR
T1 - Mechanisms for vascular cell adhesion molecule-1 activation of ERK1/2 during leukocyte transendothelial migration
AU - Abdala-Valencia, Hiam
AU - Berdnikovs, Sergejs
AU - Cook-Mills, Joan M.
PY - 2011/10/27
Y1 - 2011/10/27
N2 - Background: During inflammation, adhesion molecules regulate recruitment of leukocytes to inflamed tissues. It is reported that vascular cell adhesion molecule-1 (VCAM-1) activates extracellular regulated kinases 1 and 2 (ERK1/2), but the mechanism for this activation is not known. Pharmacological inhibitors of ERK1/2 partially inhibit leukocyte transendothelial migration in a multi-receptor system but it is not known whether VCAM-1 activation of ERK1/2 is required for leukocyte transendothelial migration (TEM) on VCAM-1. Methodology/Principal Findings: In this study, we identified a mechanism for VCAM-1 activation of ERK1/2 in human and mouse endothelial cells. VCAM-1 signaling, which occurs through endothelial cell NADPH oxidase, protein kinase Cα (PKCα), and protein tyrosine phosphatase 1B (PTP1B), activates endothelial cell ERK1/2. Inhibition of these signals blocked VCAM-1 activation of ERK1/2, indicating that ERK1/2 is activated downstream of PTP1B during VCAM-1 signaling. Furthermore, VCAM-1-specific leukocyte migration under physiological laminar flow of 2 dynes/cm 2 was blocked by pretreatment of endothelial cells with dominant-negative ERK2 K52R or the MEK/ERK inhibitors, PD98059 and U0126, indicating for the first time that ERK regulates VCAM-1-dependent leukocyte transendothelial migration. Conclusions/Significance: VCAM-1 activation of endothelial cell NADPH oxidase/PKCα/PTP1B induces transient ERK1/2 activation that is necessary for VCAM-1-dependent leukocyte TEM.
AB - Background: During inflammation, adhesion molecules regulate recruitment of leukocytes to inflamed tissues. It is reported that vascular cell adhesion molecule-1 (VCAM-1) activates extracellular regulated kinases 1 and 2 (ERK1/2), but the mechanism for this activation is not known. Pharmacological inhibitors of ERK1/2 partially inhibit leukocyte transendothelial migration in a multi-receptor system but it is not known whether VCAM-1 activation of ERK1/2 is required for leukocyte transendothelial migration (TEM) on VCAM-1. Methodology/Principal Findings: In this study, we identified a mechanism for VCAM-1 activation of ERK1/2 in human and mouse endothelial cells. VCAM-1 signaling, which occurs through endothelial cell NADPH oxidase, protein kinase Cα (PKCα), and protein tyrosine phosphatase 1B (PTP1B), activates endothelial cell ERK1/2. Inhibition of these signals blocked VCAM-1 activation of ERK1/2, indicating that ERK1/2 is activated downstream of PTP1B during VCAM-1 signaling. Furthermore, VCAM-1-specific leukocyte migration under physiological laminar flow of 2 dynes/cm 2 was blocked by pretreatment of endothelial cells with dominant-negative ERK2 K52R or the MEK/ERK inhibitors, PD98059 and U0126, indicating for the first time that ERK regulates VCAM-1-dependent leukocyte transendothelial migration. Conclusions/Significance: VCAM-1 activation of endothelial cell NADPH oxidase/PKCα/PTP1B induces transient ERK1/2 activation that is necessary for VCAM-1-dependent leukocyte TEM.
UR - http://www.scopus.com/inward/record.url?scp=80054831378&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054831378&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0026706
DO - 10.1371/journal.pone.0026706
M3 - Article
C2 - 22031842
AN - SCOPUS:80054831378
SN - 1932-6203
VL - 6
JO - PloS one
JF - PloS one
IS - 10
M1 - e26706
ER -