Membrane Potential Determined by Flow Cytometry Predicts Fertilizing Ability of Human Sperm

Lis C.Puga Molina, Stephanie Gunderson, Joan Riley, Pascal Lybaert, Aluet Borrego-Alvarez, Emily S. Jungheim, Celia M. Santi*

*Corresponding author for this work

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

Infertility affects 10 to 15% of couples worldwide, with a male factor contributing up to 50% of these cases. The primary tool for diagnosing male infertility is traditional semen analysis, which reveals sperm concentration, morphology, and motility. However, 25% of infertile men are diagnosed as normozoospermic, meaning that, in many cases, normal-appearing sperm fail to fertilize an egg. Thus, new information regarding the mechanisms by which sperm acquire fertilizing ability is needed to develop a clinically feasible test that can predict sperm function failure. An important feature of sperm fertilization capability in many species is plasma membrane hyperpolarization (membrane potential becoming more negative inside) in response to signals from the egg or female genital tract. In mice, this hyperpolarization is necessary for sperm to undergo the changes in motility (hyperactivation) and acrosomal exocytosis required to fertilize an egg. Human sperm also hyperpolarize during capacitation, but the physiological relevance of this event has not been determined. Here, we used flow cytometry combined with a voltage-sensitive fluorescent probe to measure absolute values of human sperm membrane potential. We found that hyperpolarization of human sperm plasma membrane correlated positively with fertilizing ability. Hyperpolarized human sperm had higher in vitro fertilization (IVF) ratios and higher percentages of acrosomal exocytosis and hyperactivated motility than depolarized sperm. We propose that measurements of human sperm membrane potential could be used to diagnose men with idiopathic infertility and predict IVF success in normozoospermic infertile patients. Patients with depolarized values could be guided toward intracytoplasmic sperm injection, preventing unnecessary cycles of intrauterine insemination or IVF. Conversely, patients with hyperpolarized values of sperm membrane potential could undergo only conventional IVF, avoiding the risks and costs associated with intracytoplasmic sperm injection.

Original languageEnglish (US)
Article number387
JournalFrontiers in Cell and Developmental Biology
Volume7
DOIs
StatePublished - Jan 21 2020
Externally publishedYes

Keywords

  • IVF
  • capacitation
  • flow cytometry
  • human
  • membrane potential
  • normozoospermic infertility
  • sperm

ASJC Scopus subject areas

  • Developmental Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Membrane Potential Determined by Flow Cytometry Predicts Fertilizing Ability of Human Sperm'. Together they form a unique fingerprint.

  • Cite this