Abstract
Unraveling the complex morphology of functional materials like core-shell nanoparticles and its evolution in different environments is still a challenge. Only recently has the single-particle coherent diffraction imaging (CDI), enabled by the ultrabright femtosecond free-electron laser pulses, provided breakthroughs in understanding mesoscopic morphology of nanoparticulate matter. Here, we report the first CDI results for Co@SiO2 core-shell nanoparticles randomly clustered in large airborne aggregates, obtained using the x-ray free-electron laser at the Linac Coherent Light Source. Our experimental results compare favourably with simulated diffraction patterns for clustered Co@SiO2 nanoparticles with ∼10 nm core diameter and ∼30 nm shell outer diameter, which confirms the ability to resolve the mesoscale morphology of complex metastable structures. The findings in this first morphological study of core-shell nanomaterials are a solid base for future time-resolved studies of dynamic phenomena in complex nanoparticulate matter using x-ray lasers.
Original language | English (US) |
---|---|
Article number | 164033 |
Journal | Journal of Physics B: Atomic, Molecular and Optical Physics |
Volume | 46 |
Issue number | 16 |
DOIs | |
State | Published - Aug 28 2013 |
Funding
This work was supported by a grant from the South Korean Ministry of Health and Welfare (HA17C0055) and by the South Korean National R&D Program for Cancer Control, Ministry of Health and Welfare (1720150).
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics