Abstract
This work presents a mesoscopic discrete model of load-induced thermal strain (LITS) as part of the Lattice Discrete Particle Model at high temperature (LDPM-HT) that captures the experimentally observed deformations and mechanical responses of concrete heating up to 800 °C under multiaxial loads. In the proposed model, the LITS is decoupled into elastic strain increment due to thermal degradation, and thermo-mechanical strain at the mesoscale. As the most important component, the mesoscopic thermo-mechanical strain is decomposed into a normal and two shear components. The normal component in compression of the thermo-mechanical deformation at the mesoscale controls the macroscopic LITS in the load direction, while the mesoscopic thermo-mechanical strain components in normal tension and shear directions dominate the macroscopic LITS in the unloaded directions. The correctness and accuracy of the improved LDPM-HT are demonstrated by simulating two experimental investigations, namely a heating test up to 800 °C with uniaxial load and a heating test up to 250 °C with multiaxial loads.
Original language | English (US) |
---|---|
Article number | 107613 |
Journal | International Journal of Mechanical Sciences |
Volume | 232 |
DOIs | |
State | Published - Oct 15 2022 |
Keywords
- High temperature
- Lattice discrete particle model
- Load-induced thermal strain
- Multiaxial loading
- Transient thermal creep
ASJC Scopus subject areas
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Aerospace Engineering
- Ocean Engineering
- Applied Mathematics
- General Materials Science
- Civil and Structural Engineering