TY - JOUR
T1 - Metabotropic glutamate agonist-induced rotation
T2 - A pharmacological, FOS immunohistochemical, and [14C]-2- deoxyglucose autoradiographic study
AU - Kearney, Jennifer A Feeley
AU - Frey, Kirk A.
AU - Albin, Roger L.
PY - 1997
Y1 - 1997
N2 - Metabotropic glutamate receptors (mGluRs) are a major class of excitatory amino acid receptors. Eight mGluR subtypes, coupled to a variety of effector systems, have been cloned. These receptors have been classified into three groups based on amino acid sequence homology, effector systems, and pharmacological profile. Group I mGluRs increase phosphoinositide turnover, whereas groups II and III mGluRs are negatively coupled to adenylyl cyclase. The striatum possesses a high density of mGluR binding sites, and several mGluR mRNAs and proteins are expressed by striatal neurons. In rats, unilateral striatal injection of the nonsubtype selective mGluR agonist 1- aminocyclopentane-1S,3R-dicarboxylic acid (1S,3R-ACPD) results in contralateral rotation with delayed onset, thought to be secondary to an increase in dopamine release. We sought to determine the mGluR subtype(s) involved, the modulation of the rotation by other basal ganglia neurotransmitter systems, and the functional anatomy underlying the rotational behavior. The group I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) induced contralateral rotation in a dose-dependent manner, whereas group II and group III agonists were ineffective. Rotation induced by DHPG or 1S,3R-ACPD was attenuated by group I antagonists, but not by group II or group III antagonists. This suggests that the rotation is mediated by group I mGluRs. Rotation induced by DHPG or 1S,3R-ACPD was attenuated by pretreatment with antagonists at muscarinic cholinergic, adenosine A2, dopamine D2, or dopamine D1 receptors. Examination of FOS-like immunoreactivity after group I and group II mGluR agonist administration suggests increased activity in the striatopallidal pathway. However, [14C]-2-deoxyglucose uptake studies indicate increased activity in nuclei of the striatopallidal (indirect) pathway, particularly in the subthalamic nucleus, only after group I mGluR activation.
AB - Metabotropic glutamate receptors (mGluRs) are a major class of excitatory amino acid receptors. Eight mGluR subtypes, coupled to a variety of effector systems, have been cloned. These receptors have been classified into three groups based on amino acid sequence homology, effector systems, and pharmacological profile. Group I mGluRs increase phosphoinositide turnover, whereas groups II and III mGluRs are negatively coupled to adenylyl cyclase. The striatum possesses a high density of mGluR binding sites, and several mGluR mRNAs and proteins are expressed by striatal neurons. In rats, unilateral striatal injection of the nonsubtype selective mGluR agonist 1- aminocyclopentane-1S,3R-dicarboxylic acid (1S,3R-ACPD) results in contralateral rotation with delayed onset, thought to be secondary to an increase in dopamine release. We sought to determine the mGluR subtype(s) involved, the modulation of the rotation by other basal ganglia neurotransmitter systems, and the functional anatomy underlying the rotational behavior. The group I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) induced contralateral rotation in a dose-dependent manner, whereas group II and group III agonists were ineffective. Rotation induced by DHPG or 1S,3R-ACPD was attenuated by group I antagonists, but not by group II or group III antagonists. This suggests that the rotation is mediated by group I mGluRs. Rotation induced by DHPG or 1S,3R-ACPD was attenuated by pretreatment with antagonists at muscarinic cholinergic, adenosine A2, dopamine D2, or dopamine D1 receptors. Examination of FOS-like immunoreactivity after group I and group II mGluR agonist administration suggests increased activity in the striatopallidal pathway. However, [14C]-2-deoxyglucose uptake studies indicate increased activity in nuclei of the striatopallidal (indirect) pathway, particularly in the subthalamic nucleus, only after group I mGluR activation.
KW - adenosine A2 receptors
KW - basal ganglia
KW - dopamine
KW - metabotropic glutamate receptor
KW - muscarinic receptors
KW - striatum
KW - subthalamic nucleus
UR - http://www.scopus.com/inward/record.url?scp=0001571891&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001571891&partnerID=8YFLogxK
U2 - 10.1523/jneurosci.17-11-04415.1997
DO - 10.1523/jneurosci.17-11-04415.1997
M3 - Article
C2 - 9151758
AN - SCOPUS:0001571891
SN - 0270-6474
VL - 17
SP - 4415
EP - 4425
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 11
ER -