Metal-organic framework (MOF) materials as polymerization catalysts: A review and recent advances

Timothy A. Goetjen, Jian Liu, Yufang Wu, Jingyi Sui, Xuan Zhang, Joseph T. Hupp, Omar K. Farha*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

168 Scopus citations


Synthetic polymers are ubiquitous across both the industrial and consumer segments of the world economy. Catalysts enable rapid, efficient, selective, and even stereoselective, formation of desired polymers from any of a host of candidate monomers. While numerous molecular catalysts have been shown to be effective for these reactions, separation of the catalysts from reaction products is typically difficult-a potentially problematic complication that suggests instead the use of heterogeneous catalysts. Many of the most effective heterogeneous catalysts, however, comprise supported collections of reaction centres that are decidedly nonuniform in their composition, siting, and activity. Nonuniformity complicates atomic-scale evaluation of the basis for catalytic activity and thus impedes scientific hypothesis-driven understanding and development of superior catalysts. In view of the fundamental desirability of structural and chemical uniformity at the meso, nano, and even atomic scale, crystallographically well-defined, high-porosity metal-organic frameworks (MOFs) have attracted attention as model catalysts and/or catalyst-supports for a wide variety of chemical transformations. In the realm of synthetic polymers, catalyst-functionalized MOFs have been studied for reactions ranging from coordination-mediated polymerization of ethylene to visible-light initiated radical polymerizations. Nevertheless, many polymerization reactions remain to be explored-and, no doubt, will be explored, given the remarkable structural and compositional diversity of attainable MOFs. Noteworthy emerging studies include work directed toward more sophisticated catalytic schemes such as polymer templating using MOF pore architectures and tandem copolymerizations using MOF-supported reaction centres. Finally, it is appropriate to recognize that MOFs themselves are synthetic polymers-albeit, uncoventional ones.

Original languageEnglish (US)
Pages (from-to)10409-10418
Number of pages10
JournalChemical Communications
Issue number72
StatePublished - Sep 16 2020

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Metals and Alloys
  • Materials Chemistry
  • Surfaces, Coatings and Films
  • General Chemistry
  • Catalysis


Dive into the research topics of 'Metal-organic framework (MOF) materials as polymerization catalysts: A review and recent advances'. Together they form a unique fingerprint.

Cite this