Metal-Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis

Phil De Luna, Weibin Liang, Arijit Mallick, Osama Shekhah, F. Pelayo García De Arquer, Andrew H. Proppe, Petar Todorović, Shana O. Kelley, Edward H. Sargent*, Mohamed Eddaoudi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

In tandem catalysis, two distinct catalytic materials are interfaced to feed the product of one reaction into the next one. This approach, analogous to enzyme cascades, can potentially be used to upgrade small molecules such as CO2 to more valuable hydrocarbons. Here, we investigate the materials chemistry of metal-organic framework (MOF) thin films grown on gold nanostructured microelectrodes (AuNMEs), focusing on the key materials chemistry challenges necessary to enable the applications of these MOF/AuNME composites in tandem catalysis. We applied two growth methods - layer-by-layer and solvothermal - to grow a variety of MOF thin films on AuNMEs and then characterized them using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The MOF@AuNME materials were then evaluated for electrocatalytic CO2 reduction. The morphology and crystallinity of the MOF thin films were examined, and it was found that MOF thin films were capable of dramatically suppressing CO production on AuNMEs and producing further-reduced carbon products such as CH4 and C2H4. This work illustrates the use of MOF thin films to tune the activity of an underlying CO2RR catalyst to produce further-reduced products.

Original languageEnglish (US)
Pages (from-to)31225-31232
Number of pages8
JournalACS Applied Materials and Interfaces
Volume10
Issue number37
DOIs
StatePublished - Sep 19 2018

Funding

This publication is based in part on work supported by the Center Partnership Funds Program, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. P.D.L. wishes to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for support in the form of the Canadian Graduate ScholarshipDoctoral award.

Keywords

  • CO reduction reaction
  • electrocatalysis
  • high-curvature nanostructures
  • metal-organic frameworks
  • tandem catalysis
  • thin films

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Metal-Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis'. Together they form a unique fingerprint.

Cite this