TY - JOUR
T1 - Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition
AU - Middleton, Jason W.
AU - Kiritani, Taro
AU - Pedersen, Courtney
AU - Turner, Jeremy G.
AU - Shepherd, Gordon M.G.
AU - Tzounopoulos, Thanos
PY - 2011/5/3
Y1 - 2011/5/3
N2 - Tinnitus has been associated with increased spontaneous and evoked activity, increased neural synchrony, and reorganization of tonotopic maps of auditory nuclei. However, the neurotransmitter systems mediating these changes are poorly understood. Here, we developed an in vitro assay that allows us to evaluate the roles of excitation and inhibition in determining the neural correlates of tinnitus. To measure the magnitude and spatial spread of evoked circuit activity, we used flavoprotein autofluorescence (FA) imaging, a metabolic indicator of neuronal activity. We measured FA responses after electrical stimulation of glutamatergic axons in slices containing the dorsal cochlear nucleus, an auditory brain-stem nucleus hypothesized to be crucial in the triggering and modulation of tinnitus. FA imaging in dorsal cochlear nucleus brain slices from mice with behavioral evidence of tinnitus (tinnitus mice) revealed enhanced evoked FA response at the site of stimulation and enhanced spatial propagation of FA response to surrounding sites. Blockers of GABAergic inhibition enhanced FA response to a greater extent in control mice than in tinnitus mice. Blockers of excitation decreased FA response to a similar extent in tinnitus and control mice. These findings indicate that auditory circuits in mice with behavioral evidence of tinnitus respond to stimuli in a more robust and spatially distributed manner because of a decrease in GABAergic inhibition.
AB - Tinnitus has been associated with increased spontaneous and evoked activity, increased neural synchrony, and reorganization of tonotopic maps of auditory nuclei. However, the neurotransmitter systems mediating these changes are poorly understood. Here, we developed an in vitro assay that allows us to evaluate the roles of excitation and inhibition in determining the neural correlates of tinnitus. To measure the magnitude and spatial spread of evoked circuit activity, we used flavoprotein autofluorescence (FA) imaging, a metabolic indicator of neuronal activity. We measured FA responses after electrical stimulation of glutamatergic axons in slices containing the dorsal cochlear nucleus, an auditory brain-stem nucleus hypothesized to be crucial in the triggering and modulation of tinnitus. FA imaging in dorsal cochlear nucleus brain slices from mice with behavioral evidence of tinnitus (tinnitus mice) revealed enhanced evoked FA response at the site of stimulation and enhanced spatial propagation of FA response to surrounding sites. Blockers of GABAergic inhibition enhanced FA response to a greater extent in control mice than in tinnitus mice. Blockers of excitation decreased FA response to a similar extent in tinnitus and control mice. These findings indicate that auditory circuits in mice with behavioral evidence of tinnitus respond to stimuli in a more robust and spatially distributed manner because of a decrease in GABAergic inhibition.
KW - Excitability
KW - GABA inhibition
KW - In vitro imaging
KW - Neurotransmitters
UR - http://www.scopus.com/inward/record.url?scp=79956300057&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79956300057&partnerID=8YFLogxK
U2 - 10.1073/pnas.1100223108
DO - 10.1073/pnas.1100223108
M3 - Article
C2 - 21502491
AN - SCOPUS:79956300057
VL - 108
SP - 7601
EP - 7606
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 18
ER -