Microarray profiling identifies extracellular circulating miRNAs dysregulated in cystic fibrosis

Justin E. Ideozu*, Xi Zhang, Vittobai Rangaraj, Susanna McColley, Hara Levy

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Extracellular circulating miRNAs (ECmiRNAs) play a crucial role in cell-to-cell communication and serve as non-invasive biomarkers in a wide range of diseases, but their abundance and functional relevance in cystic fibrosis (CF) remain poorly understood. In this study, we employed microarray technology to identify aberrantly expressed plasma ECmiRNAs in CF and elucidate the functional relevance of their targets. Overall, we captured several ECmiRNAs abundantly expressed in CF. Expression levels of 11 ECmiRNAs differed significantly between CF and healthy control (HC) samples (FDR < 0.05, log2 FC≥2). Among these, 10 were overexpressed while only hsa-miR-598-3p was underexpressed in CF. The overexpressed miRNAs included three let-7 family members (hsa-let-7b-5p, hsa-let-7c-5p and hsa-let-7d-5p), three 103/107 family members (hsa-mir-103a-3p; hsa-mir-103b; hsa-mir-107), hsa-miR-486-5p, and other miRNAs. Using in silico methods, we identified 2,505 validated targets of the 11 differentially expressed miRNAs. Hsa-let-7b-5p was the most important hub in the network analysis. The top-ranked validated targets were involved in miRNA biogenesis and gene expression, including AGO1, DICER1, HMGA1, and MYC. The top pathways influenced by all targets were primarily signal transduction pathways associated with CF, including PI3K/Akt-, Wnt/β catenin-, glucocorticoid receptor-, and mTor signaling pathways. Our results suggest ECmiRNAs may be clinically relevant in CF and warrant further study.

Original languageEnglish (US)
Article number15483
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Microarray profiling identifies extracellular circulating miRNAs dysregulated in cystic fibrosis'. Together they form a unique fingerprint.

Cite this