Micromechanics of the moving contact line

Minsub Han*, Seth Lichter, Chih Yu Lin, Yeong Yan Perng

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

The proposed research is divided into three components concerned with molecular structure, molecular orientation, and continuum averages of discrete systems. In the experimental program, we propose exploring how changes in interfacial molecular structure generate contact line motion. Rather than rely on the electrostatic and electrokinetic fields arising from the molecules themselves, we augment their interactions by an imposed field at the solid/liquid interface. By controlling the field, we can manipulate the molecular structure at the solid/liquid interface. In response to controlled changes in molecular structure, we observe the resultant contact line motion. In the analytical portion of the proposed research we seek to formulate a system of equations governing fluid motion which accounts for the orientation of fluid molecules. In preliminary work, we have focused on describing how molecular orientation affects the forces generated at the moving contact line. Ideally, as assumed above, the discrete behavior of molecules can be averaged into a continuum theory. In the numerical portion of the proposed research, we inquire whether the contact line region is, in fact, large enough to possess a well-defined average. Additionally, we ask what types of behavior distinguish discrete systems from continuum systems. Might the smallness of the contact line region, in itself, lead to behavior different from that in the bulk? Taken together, our proposed research seeks to identify and accurately account for some of the molecular dynamics of the moving contact line, and attempts to formulate a description from which one can compute the forces at the moving contact line.

Original languageEnglish (US)
Pages (from-to)621-626
Number of pages6
JournalNASA Conference Publication
Issue number3338
StatePublished - 1996
EventProceedings of the 1996 3rd Microgravity Fluid Physics Conference - Cleveland, OH, USA
Duration: Jul 13 1996Jul 15 1996

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Micromechanics of the moving contact line'. Together they form a unique fingerprint.

Cite this