Abstract
Gas-atomized powders of two ternary alloys, Al-3.60Mg-1.18Zr and Al-3.66Mg-1.57Zr (wt.%), were densified via laser powder bed fusion. At energy densities ranging from 123 to 247 J/mm3, as-fabricated components are near-fully densified (relative density 99.2–99.9%) as verified by X-ray tomography. While Mg acts a solid-solution strengthener, Zr creates two types of metastable L12 Al3Zr precipitates, each playing dual roles: (a) sub-micrometer Al3Zr particles form in the melt upon solidification and act as grain refining agents, nucleating fine aluminum grains, which (i) prevent hot-tearing during the rapid solidification inherent to laser melting and (ii) enhance tensile strength (Hall-Petch strengthening) and ductility (influence a heterogenous grain structure) after fabrication; (b) Al3Zr nano-precipitates form in the solid alloy during subsequent aging, which (i) precipitation-strengthen the alloy leading to an increase of >40% in strength over the as-fabricated value, and (ii) promote thermal stability of the fine grain size (and the associated Hall-Petch strengthening) after exposure to high temperature due to the slow kinetics of Al3Zr coarsening (from the sluggish diffusivity of Zr in solid Al-Mg). While the Zr-richer alloy shows higher yield and ultimate tensile strength in the as-fabricated state, both alloys have identical mechanical properties after peak aging. Interconnected bands of fine (∼0.8 μm), equiaxed, isotropic grains and coarser (∼1 × 10 μm), columnar, textured grains – both containing oxide particles and Al3Zr precipitates - provide a combination of high yield strength and high ductility (e.g., ∼354 MPa, and ∼20%, respectively) with isotropic values in both as-fabricated and peak-aged samples, unlike Al-Si alloys processed via laser fusion of commercial Al-Si-based powders. The pre-alloyed, gas-atomized Al-Mg-Zr powders do not contain expensive alloying elements such as Sc, nor do they require blending with a second powder to nucleate fine grains, making them excellent candidates for economical, large-scale additive manufacturing applications.
Original language | English (US) |
---|---|
Pages (from-to) | 35-44 |
Number of pages | 10 |
Journal | Acta Materialia |
Volume | 153 |
DOIs | |
State | Published - Jul 2018 |
Funding
This research was partially sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-15-2-0026 (V.K. Champagne, monitor) through Northeastern University, Subaward Agreement Number 504062-78050 (D. Luzzi, monitor). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. This research was partially sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-15-2-0026 (V.K. Champagne, monitor) through Northeastern University , Subaward Agreement Number 504062-78050 (D. Luzzi, monitor). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.
Keywords
- Additive manufacturing
- Aluminum alloys
- Heterogeneous grain structure
- Selective laser melting
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Polymers and Plastics
- Metals and Alloys