Microstructure and Processing of 3D Printed Tungsten Microlattices and Infiltrated W–Cu Composites

Micha Calvo*, Adam E. Jakus, Ramille N. Shah, Ralph Spolenak, David C Dunand

*Corresponding author for this work

Research output: Contribution to journalArticle

13 Scopus citations

Abstract

Tungsten is of industrial relevance due its outstanding intrinsic properties (e.g., highest melting-point of all elements) and therefore difficult to 3D-print by conventional methods. Here, tungsten micro-lattices are produced by room-temperature extrusion-based 3D-printing of an ink comprising WO3–0.5%NiO submicron powders, followed by H2-reduction and Ni-activated sintering. The green bodies underwent isotropic linear shrinkage of ≈50% during the thermal treatment resulting in micro-lattices, with overall 35–60% open-porosity, consisting of 95–100% dense W–0.5%Ni struts having ≈80–300 μm diameter. Ball-milling the powders and inks reduced the sintering temperature needed to achieve full densification from 1400 to 1200 °C and enabled the ink to be extruded through finer nozzles (200 μm). Partial sintering of the struts is achieved when NiO is omitted from the ink, with submicron interconnected-porosity of ≈34%. Several tungsten micro-lattices are infiltrated with molten copper at 1300 °C under vacuum, resulting in dense, anisotropic W–Cu composites with 40–65% tungsten volume fraction. Partially sintered struts (containing nickel) with submicron open porosity are also infiltrated with Cu, resulting in co-continuous W–Cu composites with wide W struts/Cu channels at the lattice scale (hundreds of micrometers), and fine W–Cu interpenetrating network at the strut scale (hundreds of nanometers) allowing for the design of anisotropic mechanical and electrical properties.

Original languageEnglish (US)
Article number1800354
JournalAdvanced Engineering Materials
Volume20
Issue number9
DOIs
StatePublished - Sep 1 2018

Keywords

  • 3D-printing
  • additive manufacturing
  • tungsten
  • tungsten oxide
  • tungsten-copper

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Microstructure and Processing of 3D Printed Tungsten Microlattices and Infiltrated W–Cu Composites'. Together they form a unique fingerprint.

Cite this