TY - JOUR
T1 - Mimicking the Organic and Inorganic Composition of Anabolic Bone Enhances Human Mesenchymal Stem Cell Osteoinduction and Scaffold Mechanical Properties
AU - Mondragón, Eli
AU - Cowdin, Mitzy
AU - Taraballi, Francesca
AU - Minardi, Silvia
AU - Tasciotti, Ennio
AU - Gregory, Carl A.
AU - Kaunas, Roland
N1 - Funding Information:
We would like to thank Dr. Gordana Vunjak-Novakovic for the use of the perfusion bioreactor system. We also extend our gratitude to the Texas A&M Elemental Analysis Laboratory for their assistance in ICP-MS analysis. Funding. RK and CG would like to acknowledge financial support from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01 AR066033 and R21 AR072292) and the National Science Foundation (NSF) Award (CBET 1264848 and 1264832).
Publisher Copyright:
© Copyright © 2020 Mondragón, Cowdin, Taraballi, Minardi, Tasciotti, Gregory and Kaunas.
PY - 2020/7/3
Y1 - 2020/7/3
N2 - Engineered bone graft designs have been largely inspired by adult bone despite functionally significant differences from the composition of anabolic bone in both the mineralized and non-mineralized fractions. Specifically, anabolic bone contains hydroxyapatite with ionic substitutions that facilitate bone turnover and relatively rare collagens type VI and XII that are important for normal bone development. In this work, human mesenchymal stem cells (hMSCs) were cultured in lyophilized collagen type I scaffolds mineralized with hydroxyapatite containing Mg2+ substitutions, then induced to deposit an extracellular matrix (ECM) containing collagens VI and XII by exposure to GW9662, a PPARγ inhibitor. Delivery of GW9662 was accomplished through either Supplemented Media or via composite microspheres embedded in the scaffolds for localized delivery. Furthermore, hMSCs and scaffolds were cultured in both static and perfuse conditions to investigate the interaction between GW9662 treatment and perfusion and their effects on ECM deposition trends. Perfusion culture enhanced cell infiltration into the scaffold, deposition of collagen VI and XII, as well as osteogenic differentiation, as determined by gene expression of osteopontin, BMP2, and ALP. Furthermore, scaffold mineral density and compressive modulus were increased in response to both GW9662 treatment and perfusion after 3 weeks of culture. Local delivery of GW9662 with drug-eluting microspheres had comparable effects to systemic delivery in the perfusate. Together, these results demonstrate a strategy to create a scaffold mimicking both organic and inorganic characteristics of anabolic bone and its potential as a bone graft.
AB - Engineered bone graft designs have been largely inspired by adult bone despite functionally significant differences from the composition of anabolic bone in both the mineralized and non-mineralized fractions. Specifically, anabolic bone contains hydroxyapatite with ionic substitutions that facilitate bone turnover and relatively rare collagens type VI and XII that are important for normal bone development. In this work, human mesenchymal stem cells (hMSCs) were cultured in lyophilized collagen type I scaffolds mineralized with hydroxyapatite containing Mg2+ substitutions, then induced to deposit an extracellular matrix (ECM) containing collagens VI and XII by exposure to GW9662, a PPARγ inhibitor. Delivery of GW9662 was accomplished through either Supplemented Media or via composite microspheres embedded in the scaffolds for localized delivery. Furthermore, hMSCs and scaffolds were cultured in both static and perfuse conditions to investigate the interaction between GW9662 treatment and perfusion and their effects on ECM deposition trends. Perfusion culture enhanced cell infiltration into the scaffold, deposition of collagen VI and XII, as well as osteogenic differentiation, as determined by gene expression of osteopontin, BMP2, and ALP. Furthermore, scaffold mineral density and compressive modulus were increased in response to both GW9662 treatment and perfusion after 3 weeks of culture. Local delivery of GW9662 with drug-eluting microspheres had comparable effects to systemic delivery in the perfusate. Together, these results demonstrate a strategy to create a scaffold mimicking both organic and inorganic characteristics of anabolic bone and its potential as a bone graft.
KW - biomimetic
KW - bioreactor
KW - bone
KW - drug-delivery
KW - extracellular matrix
KW - mesenchymal stem cells
UR - http://www.scopus.com/inward/record.url?scp=85088428990&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088428990&partnerID=8YFLogxK
U2 - 10.3389/fbioe.2020.00753
DO - 10.3389/fbioe.2020.00753
M3 - Article
C2 - 32719790
AN - SCOPUS:85088428990
SN - 2296-4185
VL - 8
JO - Frontiers in Bioengineering and Biotechnology
JF - Frontiers in Bioengineering and Biotechnology
M1 - 753
ER -