Abstract
Irreversible respiratory obstruction resulting from progressive airway damage, inflammation and fibrosis is a feature of several chronic respiratory diseases, including cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). The cytokine transforming growth factor ß (TGF-ß) has a pivotal role in promoting lung fibrosis and is implicated in respiratory disease severity. In the present study, we show that a previously uncharacterized miRNA, miR- 1343, reduces the expression of both TGF-ß receptor 1 and 2 by directly targeting their 3'-UTRs. After TGF-ß exposure, elevated intracellular miR-1343 significantly decreases levels of activated TGF-ß effector molecules, pSMAD2 (phosphorylated SMAD2) and pSMAD3 (phosphorylated SMAD3), when compared with a non-targeting control miRNA. As a result, the abundance of fibrotic markers is reduced, cell migration into a scratch wound impaired and epithelial-to-mesenchymal transition (EMT) repressed. Mature miR-1343 is readily detected in human neutrophils andHL-60 cells and is activated in response to stress in A549 lung epithelial cells. miR-1343 may have direct therapeutic applications in fibrotic lung disease.
Original language | English (US) |
---|---|
Pages (from-to) | 245-256 |
Number of pages | 12 |
Journal | Biochemical Journal |
Volume | 473 |
Issue number | 3 |
DOIs | |
State | Published - Feb 1 2016 |
Funding
Keywords
- Fibrosis
- Lung
- MicroRNA
- Transforming growth factor ß
ASJC Scopus subject areas
- Molecular Biology
- Biochemistry
- Cell Biology