TY - JOUR
T1 - Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes
AU - Kulisz, Andre
AU - Chen, Ningfang
AU - Chandel, Navdeep S.
AU - Shao, Zuohui
AU - Schumacker, Paul T.
PY - 2002
Y1 - 2002
N2 - The p38 mitogen-activated protein kinase (MAPK) is phosphorylated in response to oxidative stress. Mitochondria in cardiomyocytes increase their generation of reactive oxygen species (ROS) during hypoxia (1-5% O2). These ROS participate in signal transduction pathways involved in adaptive responses, including ischemic preconditioning and gene transcription. The present study therefore tested the hypothesis that hypoxia induces p38 MAPK phosphorylation by augmenting mitochondrial ROS generation. In cardiomyocytes, phosphorylation of p38 was observed in a Po2-dependent manner during hypoxia. This response was inhibited by rotenone, thenoyltrifluoroacetone, and myxothiazol, inhibitors of mitochondrial complexes I, II, and III, respectively. A similar inhibition was observed in the cells pretreated with anion channel inhibitor DIDS, which may block ROS release from mitochondria. During normoxia, increases in mitochondrial ROS elicited by azide (1-2 mM) or by the mitochondrial inhibitor antimycin A caused increased phosphorylation of p38. Brief treatment with exogenous H2O2 during normoxia also induced phosphorylation of p38 as hypoxia, but this effect was not abolished by myxothiazol or DIDS. The antioxidant N-acetyl-cysteine abolished the p38 response to hypoxia, presumably by scavenging H2O2, but the mitogen extracellular receptor kinase inhibitor PD-98059 did not inhibit p38 phosphorylation during hypoxia. Thus physiological hypoxia leads to p38 phosphorylation through a mechanism that requires electron flux in the proximal region of the mitochondrial electron transport chain, which suggests that either H2O2 or superoxide participates in activating that process.
AB - The p38 mitogen-activated protein kinase (MAPK) is phosphorylated in response to oxidative stress. Mitochondria in cardiomyocytes increase their generation of reactive oxygen species (ROS) during hypoxia (1-5% O2). These ROS participate in signal transduction pathways involved in adaptive responses, including ischemic preconditioning and gene transcription. The present study therefore tested the hypothesis that hypoxia induces p38 MAPK phosphorylation by augmenting mitochondrial ROS generation. In cardiomyocytes, phosphorylation of p38 was observed in a Po2-dependent manner during hypoxia. This response was inhibited by rotenone, thenoyltrifluoroacetone, and myxothiazol, inhibitors of mitochondrial complexes I, II, and III, respectively. A similar inhibition was observed in the cells pretreated with anion channel inhibitor DIDS, which may block ROS release from mitochondria. During normoxia, increases in mitochondrial ROS elicited by azide (1-2 mM) or by the mitochondrial inhibitor antimycin A caused increased phosphorylation of p38. Brief treatment with exogenous H2O2 during normoxia also induced phosphorylation of p38 as hypoxia, but this effect was not abolished by myxothiazol or DIDS. The antioxidant N-acetyl-cysteine abolished the p38 response to hypoxia, presumably by scavenging H2O2, but the mitogen extracellular receptor kinase inhibitor PD-98059 did not inhibit p38 phosphorylation during hypoxia. Thus physiological hypoxia leads to p38 phosphorylation through a mechanism that requires electron flux in the proximal region of the mitochondrial electron transport chain, which suggests that either H2O2 or superoxide participates in activating that process.
KW - Hydrogen peroxide
KW - Oxidant stress
KW - Protein kinases
KW - Respiration
KW - Superoxide
UR - http://www.scopus.com/inward/record.url?scp=0036080832&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036080832&partnerID=8YFLogxK
U2 - 10.1152/ajplung.00326.2001
DO - 10.1152/ajplung.00326.2001
M3 - Article
C2 - 12003789
AN - SCOPUS:0036080832
SN - 1040-0605
VL - 282
SP - L1324-L1329
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 6 26-6
ER -