Mixed-metal carbonate fluorides as deep-ultraviolet nonlinear optical materials

T. Thao Tran, Joshua Young, James M. Rondinelli, P. Shiv Halasyamani*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

89 Scopus citations

Abstract

Noncentrosymmetric mixed-metal carbonate fluorides are promising materials for deep-ultraviolet (DUV) nonlinear optical (NLO) applications. We report on the synthesis, characterization, structure-property relationships, and electronic structure calculations on two new DUV NLO materials: KMgCO3F and Cs9Mg6(CO3)8F5. Both materials are noncentrosymmetric (NCS). KMgCO3F crystallizes in the achiral and nonpolar NCS space group P62m, whereas Cs9Mg6(CO3)8F5 is found in the polar space group Pmn21 The compounds have three-dimensional structures built up from corner-shared magnesium oxyfluoride and magnesium oxide octahedra. KMgCO3F (Cs9Mg6(CO3)8F5) exhibits second-order harmonic generation (SHG) at both 1064 and 532 nm incident radiation with efficiencies of 120 (20) × α-SiO2 and 0.33 (0.10) X β-BaB2O4, respectively. In addition, short absorption edges of <200 and 208 nm for KMgCO3F and Cs9Mg6(CO3)8F5, respectively, are observed. We compute the electron localization function and density of states of these two compounds using first-principles density functional theory, and show that the different NLO responses arise from differences in the denticity and alignment of the anionic carbonate units. Finally, an examination of the known SHG active AMCO3F (A = alkali metal, M = alkaline earth metal, Zn, Cd, or Pb) materials indicates that, on average, smaller A cations and larger M cations result in increased SHG efficiencies.

Original languageEnglish (US)
Pages (from-to)1285-1295
Number of pages11
JournalJournal of the American Chemical Society
Volume139
Issue number3
DOIs
StatePublished - Jan 25 2017

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Mixed-metal carbonate fluorides as deep-ultraviolet nonlinear optical materials'. Together they form a unique fingerprint.

Cite this