Abstract
Mixed polyanion glasses can undergo glass-state conversion (GSC) reactions to provide an alternate class of high-capacity cathode materials. GSC reactions have been demonstrated in phosphate/vanadate glasses with Ag, Co, Cu, Fe, and Ni cations. These mixed polyanion glasses provided high capacity and good high power performance, but suffer from moderate voltages, large voltage hysteresis, and significant capacity fade with cycling. Details of the GSC reaction have been revealed by X-ray absorption spectroscopy, electron microscopy, and energy dispersive X-ray spectroscopy of ex situ cathodes at key states of charge. Using the Open Quantum Materials Database (OQMD), a computational thermodynamic model has been developed to predict the nearequilibrium voltages of glass-state conversion reactions in mixed polyanion glasses.
Original language | English (US) |
---|---|
Pages (from-to) | A131-A137 |
Journal | Journal of the Electrochemical Society |
Volume | 163 |
Issue number | 2 |
DOIs | |
State | Published - 2016 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry