Abstract
While structures and bifurcations controlling tracer particle transport and mixing have been studied extensively for systems with only stretching-and-folding, and to a lesser extent for systems with only cutting-and-shuffling, few studies have considered systems with a combination of both. We demonstrate two bifurcations for nonmixing islands associated with elliptic periodic points that only occur in systems with combined cutting-and-shuffling and stretching-and-folding, using as an example a map approximating biaxial rotation of a less-than-half-full spherical granular tumbler. First, we characterize a bifurcation of elliptic island containment, from containment by manifolds associated with hyperbolic periodic points to containment by cutting line tangency. As a result, the maximum size of the nonmixing region occurs when the island is at the bifurcation point. We also demonstrate a bifurcation where periodic points are annihilated by the cutting-and-shuffling action. Chains of elliptic and hyperbolic periodic points that arise when invariant tori surrounding an elliptic point break up [according to Kolmogorov-Arnold-Moser (KAM) theory] can annihilate when they meet a cutting line. Consequently, the Poincaré index (a topological invariant of smooth systems) is not preserved.
Original language | English (US) |
---|---|
Article number | 042213 |
Journal | Physical Review E |
Volume | 96 |
Issue number | 4 |
DOIs | |
State | Published - Oct 19 2017 |
Funding
P.B.U. was partially supported by the National Science Foundation Contract No. CMMI-1435065.
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics