Mixture of time-warped trajectory models for movement decoding

Elaine A. Corbett*, Eric J. Perreault, Konrad Paul Kording

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

Applications of Brain-Machine-Interfaces typically estimate user intent based on biological signals that are under voluntary control. For example, we might want to estimate how a patient with a paralyzed arm wants to move based on residual muscle activity. To solve such problems it is necessary to integrate obtained information over time. To do so, state of the art approaches typically use a probabilistic model of how the state, e.g. position and velocity of the arm, evolves over time - a so-called trajectory model. We wanted to further develop this approach using two intuitive insights: (1) At any given point of time there may be a small set of likely movement targets, potentially identified by the location of objects in the workspace or by gaze information from the user. (2) The user may want to produce movements at varying speeds. We thus use a generative model with a trajectory model incorporating these insights. Approximate inference on that generative model is implemented using a mixture of extended Kalman filters. We find that the resulting algorithm allows us to decode arm movements dramatically better than when we use a trajectory model with linear dynamics.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 23
Subtitle of host publication24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
PublisherNeural Information Processing Systems
ISBN (Print)9781617823800
StatePublished - 2010
Event24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010 - Vancouver, BC, Canada
Duration: Dec 6 2010Dec 9 2010

Publication series

NameAdvances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010

Conference

Conference24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
Country/TerritoryCanada
CityVancouver, BC
Period12/6/1012/9/10

ASJC Scopus subject areas

  • Information Systems

Fingerprint

Dive into the research topics of 'Mixture of time-warped trajectory models for movement decoding'. Together they form a unique fingerprint.

Cite this