Moderate exercise improves function and increases adiponectin in the mdx mouse model of muscular dystrophy

Aaron S. Zelikovich, Mattia Quattrocelli, Isabella M. Salamone, Nancy L Kuntz, Elizabeth M McNally*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The loss of dystrophin produces a mechanically fragile sarcolemma, causing muscle membrane disruption and muscle loss. The degree to which exercise alters muscular dystrophy has been evaluated in humans with Duchenne Muscular Dystrophy (DMD) and in mouse models including the mdx mouse but with inconsistent findings. We now examined two different levels of exercise, moderate and low intensity, in the mdx mouse model in the DBA2J background. mdx mice at 4–5 months of age were subjected to two different doses of exercise. We found a dose-dependent benefit for low and moderate exercise, defined as 4 m/min or 8 m/min, for 30 minutes three times a week. After six months, exercised mdx mice showed improved tetanic and specific force compared to the sedentary group. We also observed increased respiratory capacity manifesting as greater minute volume, as well as enhanced cardiac function mitigating the decline of fractional shortening that is normally seen. Exercised mdx mice also showed a dose-dependent increase in serum adiponectin with a concomitant reduced adipocyte cross sectional area. These findings identify moderate intensity exercise as a means to improve muscle performance in the mdx DBA2J mice and suggest serum adiponectin as a biomarker for beneficial exercise effect in DMD.

Original languageEnglish (US)
Article number5770
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Moderate exercise improves function and increases adiponectin in the mdx mouse model of muscular dystrophy'. Together they form a unique fingerprint.

Cite this