Abstract
Modern computational magnetism continues to grow at an accelerating pace stimulated by new and exciting discoveries important for basic science and technological applications. Here, we review some recent important progress made in treating complex noncollinear magnetic phenomena arising from the breaking of symmetry at surfaces, interfaces, and nanostructures, by means of our newly generalized first principles full-potential linearized augmented plane wave (FLAPW) method for noncollinear magnetism with no shape approximation to the magnetization. Because of space limitations, we restrict our report to illustrate results of the noncollinear magnetic structures induced at the FM NiFe/AFM NiMn interfaces, in the domain walls of FM Fe and AFM NiMn, and in the vortex cores of an Fe quantum dot. These results are in good agreement with experiments and provide new information about magnetic phenomena at surfaces, interfaces, and in nanostructures.
Original language | English (US) |
---|---|
Pages (from-to) | 1399-1405 |
Number of pages | 7 |
Journal | Physica Status Solidi (B) Basic Research |
Volume | 241 |
Issue number | 7 |
DOIs | |
State | Published - Jun 2004 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics