Modulation of brain networks during MR-compatible transcranial direct current stimulation

Amber M. Leaver*, Sara Gonzalez, Megha Vasavada, Antoni Kubicki, Mayank Jog, Danny J.J. Wang, Roger P. Woods, Randall Espinoza, Jacqueline Gollan, Todd Parrish, Katherine L. Narr

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Transcranial direct current stimulation (tDCS) can influence performance on behavioral tasks and improve symptoms of brain conditions. Yet, it remains unclear precisely how tDCS affects brain function and connectivity. Here, we measured changes in functional connectivity (FC) metrics in blood-oxygenation-level-dependent (BOLD) fMRI data acquired during MR-compatible tDCS in a whole-brain analysis with corrections for false discovery rate. Volunteers (n = 64) received active tDCS, sham tDCS, and rest (no stimulation), using one of three previously established electrode tDCS montages targeting left dorsolateral prefrontal cortex (DLPFC, n = 37), lateral temporoparietal area (LTA, n = 16), or superior temporal cortex (STC, n = 11). In brain networks where simulated E field was highest in each montage, connectivity with remote nodes decreased during active tDCS. During active DLPFC-tDCS, connectivity decreased between a fronto-parietal network and subgenual ACC, while during LTA-tDCS connectivity decreased between an auditory-somatomotor network and frontal operculum. Active DLPFC-tDCS was also associated with increased connectivity within an orbitofrontal network overlapping subgenual ACC. Irrespective of montage, FC metrics increased in sensorimotor and attention regions during both active and sham tDCS, which may reflect the cognitive-perceptual demands of tDCS. Taken together, these results indicate that tDCS may have both intended and unintended effects on ongoing brain activity, stressing the importance of including sham, stimulation-absent, and active comparators in basic science and clinical trials of tDCS.

Original languageEnglish (US)
Article number118874
StatePublished - Apr 15 2022


  • Functional connectivity
  • Transcranial direct current stimulation
  • fMRI

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience


Dive into the research topics of 'Modulation of brain networks during MR-compatible transcranial direct current stimulation'. Together they form a unique fingerprint.

Cite this