Modules for ℤ/p × ℤ/p

Jon F. Carlson, Eric M. Friedlander, Andrei Suslin

Research output: Contribution to journalArticle

  • 16 Citations

Abstract

We investigate various aspects of the modular representation theory of ℤ/p × ℤ/p with particular focus on modules of constant Jordan type. The special modules we consider and the constructions we introduce not only reveal some of the structure of (ℤ/p × ℤ/p)-modules but also provide a guide to further study of the representation theory of more general finite group schemes.

LanguageEnglish (US)
Pages609-657
Number of pages49
JournalCommentarii Mathematici Helvetici
Volume86
Issue number3
DOIs
StatePublished - Jun 10 2011

Fingerprint

Representation Theory
Module
Modular Representations
Group Scheme
Finite Group

Keywords

  • Jordan type
  • Modular representations

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Carlson, J. F., Friedlander, E. M., & Suslin, A. (2011). Modules for ℤ/p × ℤ/p. Commentarii Mathematici Helvetici, 86(3), 609-657. DOI: 10.4171/CMH/236
Carlson, Jon F. ; Friedlander, Eric M. ; Suslin, Andrei. / Modules for ℤ/p × ℤ/p. In: Commentarii Mathematici Helvetici. 2011 ; Vol. 86, No. 3. pp. 609-657
@article{7210a7acf3dd42bcaab84d12a182fa07,
title = "Modules for ℤ/p × ℤ/p",
abstract = "We investigate various aspects of the modular representation theory of ℤ/p × ℤ/p with particular focus on modules of constant Jordan type. The special modules we consider and the constructions we introduce not only reveal some of the structure of (ℤ/p × ℤ/p)-modules but also provide a guide to further study of the representation theory of more general finite group schemes.",
keywords = "Jordan type, Modular representations",
author = "Carlson, {Jon F.} and Friedlander, {Eric M.} and Andrei Suslin",
year = "2011",
month = "6",
day = "10",
doi = "10.4171/CMH/236",
language = "English (US)",
volume = "86",
pages = "609--657",
journal = "Commentarii Mathematici Helvetici",
issn = "0010-2571",
publisher = "European Mathematical Society Publishing House",
number = "3",

}

Carlson, JF, Friedlander, EM & Suslin, A 2011, 'Modules for ℤ/p × ℤ/p' Commentarii Mathematici Helvetici, vol. 86, no. 3, pp. 609-657. DOI: 10.4171/CMH/236

Modules for ℤ/p × ℤ/p. / Carlson, Jon F.; Friedlander, Eric M.; Suslin, Andrei.

In: Commentarii Mathematici Helvetici, Vol. 86, No. 3, 10.06.2011, p. 609-657.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Modules for ℤ/p × ℤ/p

AU - Carlson,Jon F.

AU - Friedlander,Eric M.

AU - Suslin,Andrei

PY - 2011/6/10

Y1 - 2011/6/10

N2 - We investigate various aspects of the modular representation theory of ℤ/p × ℤ/p with particular focus on modules of constant Jordan type. The special modules we consider and the constructions we introduce not only reveal some of the structure of (ℤ/p × ℤ/p)-modules but also provide a guide to further study of the representation theory of more general finite group schemes.

AB - We investigate various aspects of the modular representation theory of ℤ/p × ℤ/p with particular focus on modules of constant Jordan type. The special modules we consider and the constructions we introduce not only reveal some of the structure of (ℤ/p × ℤ/p)-modules but also provide a guide to further study of the representation theory of more general finite group schemes.

KW - Jordan type

KW - Modular representations

UR - http://www.scopus.com/inward/record.url?scp=79958076663&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79958076663&partnerID=8YFLogxK

U2 - 10.4171/CMH/236

DO - 10.4171/CMH/236

M3 - Article

VL - 86

SP - 609

EP - 657

JO - Commentarii Mathematici Helvetici

T2 - Commentarii Mathematici Helvetici

JF - Commentarii Mathematici Helvetici

SN - 0010-2571

IS - 3

ER -

Carlson JF, Friedlander EM, Suslin A. Modules for ℤ/p × ℤ/p. Commentarii Mathematici Helvetici. 2011 Jun 10;86(3):609-657. Available from, DOI: 10.4171/CMH/236