Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy

Ken ichi Saitoh*, Wing Kam Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Molecular dynamics (MD) study of martensitic transformation (MT) in nickel and aluminum alloy is performed. The behavior focused on is transformation between crystalline structures from B2 cubic cell to body-centered tetragonal cell, which is simply realized by uniaxial tensile loading. The potential function used is Finnis-Sinclair type having only single energy minimum where B2 structure exists. The availability of this specific many-body potential for stress-induced MT phenomena under uniaxial loading is fully discussed. In MD simulations, martensite phase is induced by tensile stress or strain in the atomic system, as predicted by a potential energy map. It is understood that the characteristic of the potential energy function with regard to deformation is crucial for MT studies and investigating energy-strain or stress-strain map is worthwhile. The MT behavior in the atomic system occurs during a plateau region of stress-strain (S-S) curve of the whole specimen, that is typical for experimental superelastic or shape-memory alloys under uniaxial loading. It is found that, during each MT event, large jump of atomic strain is observed. Owing to single energy minimum, the atomic system shows almost perfect recovery in S-S curve, where the graph comes completely back to initial state after unloaded. Besides, the present paper focuses on surface effect for MT behavior. Since the surface effect is dominant in MT phenomena especially in microscopic specimens, a novel computational scheme for stabilizing condition in which uniaxial loading is always applied together with arbitrary periodic boundary condition(s) is devised. By comparing one-, two-, and three-dimensional models under uniaxial loading, it is recognized that the nucleation behavior depends strongly on the existence of free surface region (including corner edge). When there is no surface, a chaotic nucleation of martensite is observed. On the other hand, the free surface induces first martensite because of less constraint in tensile deformation of unit cells. It is confirmed that the tendency toward MT nucleation corresponds to yield stress or strain of the specimen. In order to define and detect martensite structure as for each atom, an atomic strain measure (ASM) with our own formation is introduced. It is shown that the ASM is very effective to distinguish martensite bct unit structure from others.

Original languageEnglish (US)
Pages (from-to)531-544
Number of pages14
JournalComputational Materials Science
Volume46
Issue number2
DOIs
StatePublished - Aug 2009

Keywords

  • Crystalline structure
  • Finnis-Sinclair potential
  • Martensitic transformation
  • Molecular dynamics
  • Nickel and aluminum alloy
  • Stress-induced phase transformation

ASJC Scopus subject areas

  • Computer Science(all)
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Computational Mathematics

Fingerprint Dive into the research topics of 'Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy'. Together they form a unique fingerprint.

Cite this