Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors

Samuel I. Stupp*, Paul V. Braun

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

832 Scopus citations

Abstract

Organic molecules can alter inorganic microstructures, offering a very powerful tool for the design of novel materials. In biological systems, this tool is often used to create microstructures in which the organic manipulators are a minority component. Three groups of materials - biomaterials, ceramics, and semiconductors - have been selected to illustrate this concept as used by nature and by synthetic laboratories exploring its potential in materials technology. In some of nature's biomaterials, macromolecules such as proteins, glycoproteins, and polysaccharides are used to control nucleation and growth of mineral phases and thus manipulate microstructure and physical properties. This concept has been used synthetically to generate apatite-based materials that can function as artificial bone in humans. Synthetic polymers and surfactants can also drastically change the morphology of ceramic particles, impart new functional properties, and provide new processing methods for the formation of useful objects. Interesting opportunities also exist in creating semiconducting materials in which molecular manipulators connect quantum dots or template cavities, which change their electronic properties and functionality.

Original languageEnglish (US)
Pages (from-to)1242-1248
Number of pages7
JournalScience
Volume277
Issue number5330
DOIs
StatePublished - Aug 29 1997

Funding

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors'. Together they form a unique fingerprint.

Cite this