Moral decision-making by analogy: Generalizations versus exemplars

Joseph A. Blass, Kenneth D Forbus

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

Moral reasoning is important to model accurately as Al systems become ever more integrated into our lives. Moral reasoning is rapid and unconscious; analogical reasoning, which can be unconscious, is a promising approach to model moral reasoning. This paper explores the use of analogical generalizations to improve moral reasoning. Analogical reasoning has already been used successfully to model moral reasoning in the MoralDM model, but it exhaustively matches across all known cases, which is computationally intractable and cognitively implausible for human-scale knowledge bases. We investigate the performance of an extension of MoralDM to use the MAC/FAC model of analogical retrieval over three conditions, across a set of highly confusable moral scenarios.

Original languageEnglish (US)
Title of host publicationProceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PublisherAI Access Foundation
Pages501-507
Number of pages7
ISBN (Electronic)9781577356998
StatePublished - Jun 1 2015
Event29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 - Austin, United States
Duration: Jan 25 2015Jan 30 2015

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume1

Other

Other29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Country/TerritoryUnited States
CityAustin
Period1/25/151/30/15

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Moral decision-making by analogy: Generalizations versus exemplars'. Together they form a unique fingerprint.

Cite this