More Efficient MPC from Improved Triple Generation and Authenticated Garbling

Kang Yang, Xiao Wang, Jiang Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Recent works on distributed garbling have provided highly efficient solutions for constant-round MPC tolerating an arbitrary number of corruptions. In this work, we improve upon state-of-the-art protocols in this paradigm for further performance gain. First, we propose a new protocol for generating authenticated AND triples, which is a key building block in many recent works. \beginitemize \item We propose a new authenticated bit protocol in the two-party and multi-party settings from bare IKNP OT extension, allowing us to reduce the communication by about $24%$ and eliminate many computation bottlenecks. We further improve the computational efficiency for multi-party authenticated AND triples with cheaper and fewer consistency checks and fewer hash function calls. \item We implemented our triple generation protocol and observe around $4\times$ to $5\times$ improvement compared to the best prior protocol in most settings. For example, in the two-party setting with 10 Gbps network and 8 threads, our protocol can generate more than $4$ million authenticated triples per second, while the best prior implementation can only generate $0.8$ million triples per second. In the multi-party setting, our protocol can generate more than $37000$ triples per second over 80 parties, while the best prior protocol can only generate the same number of triples per second over 16 parties. \enditemize We also improve the state-of-the-art multi-party authenticated garbling protocol. \beginitemize \item We take the first step towards applying half-gates in the multi-party setting, which enables us to reduce the size of garbled tables by $2?$ bits per gate per garbler, where ? is the computational security parameter. This optimization is also applicable in the semi-honest multi-party setting. \item We further reduce the communication of circuit authentication from $4?$ bits to $1$ bit per gate, using a new multi-party batched circuit authentication, where ? is the statistical security parameter. Prior solution with similar efficiency is only applicable in the two-party setting. \enditemize For example, in the three-party setting, our techniques can lead to roughly a $35%$ reduction in the size of a distributed garbled circuit.

Original languageEnglish (US)
Title of host publicationCCS 2020 - Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security
PublisherAssociation for Computing Machinery
Pages1627-1646
Number of pages20
ISBN (Electronic)9781450370899
DOIs
StatePublished - Oct 30 2020
Event27th ACM SIGSAC Conference on Computer and Communications Security, CCS 2020 - Virtual, Online, United States
Duration: Nov 9 2020Nov 13 2020

Publication series

NameProceedings of the ACM Conference on Computer and Communications Security
ISSN (Print)1543-7221

Conference

Conference27th ACM SIGSAC Conference on Computer and Communications Security, CCS 2020
Country/TerritoryUnited States
CityVirtual, Online
Period11/9/2011/13/20

Keywords

  • malicious security
  • secure computation

ASJC Scopus subject areas

  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'More Efficient MPC from Improved Triple Generation and Authenticated Garbling'. Together they form a unique fingerprint.

Cite this