Moving contact lines and rivulet instabilities. Part 1. The static rivulet

Stephen H. Davis*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

96 Scopus citations

Abstract

A rivulet is a narrow stream of liquid located on a solid surface and sharing a curved interface with the surrounding gas. Capillary instabilities are investigated by a linearized stability theory. The formulation is for small, static rivulets whose contact (common or three-phase) lines (i) are fixed, (ii) move but have fixed contact angles or (iii) move but have contact angles smooth functions of contact-line speeds. The linearized stability equations are converted to a disturbance kinetic-energy balance showing that the disturbance response exactly satisfies a damped linear harmonic-oscillator equation. The ‘damping coefficient’ contains the bulk viscous dissipation, the effect of slip along the solid and all dynamic effects that arise in contact-line condition (iii). The ‘spring constant’, whose sign determines stability or instability in the system, incorporates the interfacial area changes and is identical in cases (ii) and (iii). Thus, for small disturbances changes in contact angle with contact-line speed constitute a purely dissipative process. All the above results are independent of slip model at the liquid–solid interface as long as a certain integral inequality holds. Finally, sufficient conditions for stability are obtained in all cases (i), (ii) and (iii).

Original languageEnglish (US)
Pages (from-to)225-242
Number of pages18
JournalJournal of fluid Mechanics
Volume98
Issue number2
DOIs
StatePublished - May 1980
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Moving contact lines and rivulet instabilities. Part 1. The static rivulet'. Together they form a unique fingerprint.

Cite this