MRI measures of fat infiltration in the lower extremities following motor incomplete spinal cord injury: Reliability and potential implications for muscle activation

Andrew C. Smith, Maria Knikou, Katrina L. Yelick, Abigail R. Alexander, Margaret M. Murnane, Andrew A. Kritselis, Paul J. Houmpavlis, Jacob G. McPherson, Marie Wasielewski, Mark A. Hoggarth, James Matthew Elliott

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Muscle fat infiltration (MFI) is an expected consequence of incomplete spinal cord injury (iSCI). The MFI magnitude may have clinical value in determining functional recovery. However, there is a lack of understanding of how MFI relates to the volitional muscle activity in people with motor incomplete spinal cord injury (iSCI). Five iSCI and 5 uninjured age-matched control subjects participated in the study. In this preliminary study, we established the reliability of MFI quantification of select lower extremity muscles across different raters. Secondly, we assessed the magnitude and distribution of MFI in the lower legs of iSCI and uninjured control participants. Thirdly, we explored the relationship between MFI in the plantarflexor muscles and the ability to volitionally activate these muscles. High levels of inter-rater reliability were observed. The iSCI group had significantly elevated and a vastly different MFI distribution in the lower leg muscles compared to healthy controls. MFI was negatively correlated with volitional activation in iSCI. Our preliminary results sanction the importance of lower extremity MFI quantification as a potential measure in determining the functional outcomes in iSCI, and the subsequent pathological sequelae.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5451-5456
Number of pages6
Volume2016-October
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
CountryUnited States
CityOrlando
Period8/16/168/20/16

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'MRI measures of fat infiltration in the lower extremities following motor incomplete spinal cord injury: Reliability and potential implications for muscle activation'. Together they form a unique fingerprint.

Cite this