Multi-modal decoding: Longitudinal coherency changes between spike trains, local field potentials and electrocorticogram signals

Karthikeyan Balasubramanian, Kazutaka Takahashi, Marc W Slutzky, Nicholas G. Hatsopoulos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Neural information degeneracy in chronic implants due to signal instabilities affects optimal performance of brain-machine interfaces (BMIs). Spike-decoders are more vulnerable compared to those using LFPs and ECoG signals. In order for BMIs to perform reliably across years, decoders should be able to use neural information contained in various signal modalities. Hence, it is important to identify information redundancy among signal types. In this work, spikes, LFPs and ECoGs were recorded simultaneously from motor cortex of a rhesus monkey, while the animal was learning to control a multi-DOF robot with a spike-decoder. As the behavioral performance increased, the linear association among the signal types increased. Coherency of these signals increased in specific frequency bands as learning occurred. These results suggest the possibility of substituting the information lost in one modality by another.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5192-5195
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period8/26/148/30/14

Keywords

  • Electrocorticography (ECoG)
  • coherence
  • local field potentials (LFPs)
  • non-human primates
  • β oscillations
  • γ oscillations

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • Medicine(all)

Fingerprint

Dive into the research topics of 'Multi-modal decoding: Longitudinal coherency changes between spike trains, local field potentials and electrocorticogram signals'. Together they form a unique fingerprint.

Cite this