Abstract
Network analysis of human brain connectivity is critically important for understanding brain function and disease states. Embedding a brain network as a whole graph instance into a meaningful low-dimensional representation can be used to investigate disease mechanisms and inform therapeutic interventions. Moreover, by exploiting information from multiple neuroimaging modalities or views, we are able to obtain an embedding that is more useful than the embedding learned from an individual view. Therefore, multi-view multi-graph embedding becomes a crucial task. Currently only a few studies have been devoted to this topic, and most of them focus on vector-based strategy which will cause structural information contained in the original graphs lost. As a novel attempt to tackle this problem, we propose Multi-view Multi-graph Embedding (M2E) by stacking multi-graphs into multiple partially-symmetric tensors and using tensor techniques to simultaneously leverage the dependencies and correlations among multi-view and multi-graph brain networks. Extensive experiments on real HIV and bipolar disorder brain network datasets demonstrate the superior performance of M2E on clustering brain networks by leveraging the multi-view multi-graph interactions.
Original language | English (US) |
---|---|
Title of host publication | 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 |
Publisher | AAAI Press |
Pages | 117-124 |
Number of pages | 8 |
ISBN (Electronic) | 9781577358008 |
State | Published - 2018 |
Event | 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States Duration: Feb 2 2018 → Feb 7 2018 |
Publication series
Name | 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 |
---|
Other
Other | 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 2/2/18 → 2/7/18 |
Funding
This work is supported in part by NSF grants No. IIS-1526499 and CNS-1626432, NIH grant No. R01-MH080636, and NSFC grants No. 61503253 and 61672313.
Keywords
- Brain network embedding
- Multi-graph embedding
- Multi-view learning
- Tensor factorization
ASJC Scopus subject areas
- Artificial Intelligence