Abstract
Owing to prominence as a diagnostic tool for probing the neural correlates of cognition, neuroimaging tensor data has been the focus of intense investigation. Although many supervised tensor learning approaches have been proposed, they either cannot capture the nonlinear relationships of tensor data or cannot preserve the complex multi-way structural information. In this paper, we propose a Multi-way Multi-level Kernel (MMK) model that can extract discriminative, nonlinear and structural preserving representations of tensor data. Specifically, we introduce a kernelized CP tensor factorization technique, which is equivalent to performing the low-rank tensor factorization in a possibly much higher dimensional space that is implicitly defined by the kernel function. We further employ a multi-way nonlinear feature mapping to derive the dual structural preserving kernels, which are used in conjunction with kernel machines (e.g., SVM). Extensive experiments on real-world neuroimages demonstrate that the proposed MMK method can effectively boost the classification performance on diverse brain disorders (i.e., Alzheimer's disease, ADHD, and HIV).
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 6846-6854 |
Number of pages | 9 |
ISBN (Electronic) | 9781538604571 |
DOIs | |
State | Published - Nov 6 2017 |
Event | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States Duration: Jul 21 2017 → Jul 26 2017 |
Publication series
Name | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Volume | 2017-January |
Other
Other | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 7/21/17 → 7/26/17 |
Funding
This work is supported in part by NSFC through grants 61503253, 61672357 and 61672313, NSF through grants IIS-1526499 and CNS-1626432, NIH through grant R01-MH080636, and the Science Foundation of Guangdong Province through grant 2014A030313556.
ASJC Scopus subject areas
- Signal Processing
- Computer Vision and Pattern Recognition