Abstract
This study aims to develop multifunctionality of cementitious composites with the integrated self-sensing and self-healing capacities by incorporating conductive carbon black (CB) with CB-encapsulated slaked lime (SL). The microsized SL particles were premixed with a half of designed content of nanosized CB particles. When CB agglomerations coat around the SL surfaces, SL does not hydrate until the CB coating is removed. Another half of designed weight of CB is uniformly dispersed using ultrasonication with superplasticizer and added to obtain piezoresistivity. The results show that the stress sensing capacity of CB-SL-cementitious composite performs well with the compressive stress. Autogenous healing performances presented significantly can improve the self-healing capacity with the increase of SL. Furthermore, the healing efficiency is affected by the crack width and dispersion of SL, and the smaller cracks with SL are more easily healed. The size of CB agglomerations decreases with the added SL, and the main product of self-healing is calcium carbonate.
Original language | English (US) |
---|---|
Journal | Ceramics International |
DOIs | |
State | Accepted/In press - 2022 |
Keywords
- Carbon black
- Cement-based sensor
- Cementitious composites
- Microstructure
- Self-healing
- Self-sensing
- Slaked lime
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry