Multimodal interference-based imaging of nanoscale structure and macromolecular motion uncovers UV induced cellular paroxysm

Scott Gladstein, Luay M. Almassalha, Lusik Cherkezyan, John E. Chandler, Adam Eshein, Aya Eid, Di Zhang, Wenli Wu, Greta M. Bauer, Andrew D. Stephens, Simona Morochnik, Hariharan Subramanian, John F. Marko, Guillermo A. Ameer, Igal Szleifer, Vadim Backman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Understanding the relationship between intracellular motion and macromolecular structure remains a challenge in biology. Macromolecular structures are assembled from numerous molecules, some of which cannot be labeled. Most techniques to study motion require potentially cytotoxic dyes or transfection, which can alter cellular behavior and are susceptible to photobleaching. Here we present a multimodal label-free imaging platform for measuring intracellular structure and macromolecular dynamics in living cells with a sensitivity to macromolecular structure as small as 20 nm and millisecond temporal resolution. We develop and validate a theory for temporal measurements of light interference. In vitro, we study how higher-order chromatin structure and dynamics change during cell differentiation and ultraviolet (UV) light irradiation. Finally, we discover cellular paroxysms, a near-instantaneous burst of macromolecular motion that occurs during UV induced cell death. With nanoscale sensitive, millisecond resolved capabilities, this platform could address critical questions about macromolecular behavior in live cells.

Original languageEnglish (US)
Article number1652
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

Funding

This work was supported by fellowships and grants from the National Institutes of Health grant R01-GM105847, R01 CA200064, R33CA225323, 1R01CA228272, R01CA225002, R01EB016983, R01CA165309, K99 GM123195, the National Cancer Institute grant U54-CA193419 (CR-PS-OC), the NIH Chemistry of Life Processes Predoctoral Training grant #5T32GM105538-03 and the National Science Foundation grant CBET-1240416. An award of computer time was provided by the INCITE program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Multimodal interference-based imaging of nanoscale structure and macromolecular motion uncovers UV induced cellular paroxysm'. Together they form a unique fingerprint.

Cite this