Multiphoton absorption order of CsPbBr3 as determined by wavelength-dependent nonlinear optical spectroscopy

Felix O. Saouma, Constantinos C. Stoumpos, Mercouri G. Kanatzidis, Yong Soo Kim*, Joon I. Jang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


CsPbBr3 is a direct-gap semiconductor where optical absorption takes place across the fundamental bandgap, but this all-inorganic halide perovskite typically exhibits above-bandgap emission when excited over an energy level, lying above the conductionband minimum. We probe this bandgap anomaly using wavelength-dependent multiphoton absorption spectroscopy and find that the fundamental gap is strictly twophoton forbidden, rendering it three-photon absorption (3PA) active. Instead, two-photon absorption (2PA) commences when the two-photon energy is resonant with the optical gap, associated with the level causing the anomaly. We determine absolute nonlinear optical dispersion over this 3PA-2PA region, which can be explained by two-band models in terms of the optical gap. The polarization dependence of 3PA and 2PA is also measured and explained by the relevant selection rules. CsPbBr3 is highly luminescent under multiphoton absorption at room temperature with marked polarization and wavelength dependence at the 3PA-2PA crossover and therefore has potential for nonlinear optical applications.

Original languageEnglish (US)
Pages (from-to)4912-4917
Number of pages6
JournalJournal of Physical Chemistry Letters
Issue number19
StatePublished - Oct 5 2017

ASJC Scopus subject areas

  • Materials Science(all)
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Multiphoton absorption order of CsPbBr<sub>3</sub> as determined by wavelength-dependent nonlinear optical spectroscopy'. Together they form a unique fingerprint.

Cite this