TY - JOUR
T1 - Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets
AU - Kudinov, Alexander E.
AU - Karanicolas, John
AU - Golemis, Erica A.
AU - Boumber, Yanis
N1 - Funding Information:
The authors were supported by R21CA191425 from the NIH and AHEPA Foundation funding (to E.A. Golemis), a DOD Career Development Award LC140074 (to Y. Boumber), R01CA178831 (to J. Karanicolas), and NCI Core Grant P30 CA006927 (to Fox Chase Cancer Center).
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in Drosophila, the human Musashi proteins were initially linked to control of maintenance of hematopoietic stem cells, then stem cell compartments for additional cell types. More recently, the Musashi proteins were found to be overexpressed and prognostic of outcome in numerous cancer types, including colorectal, lung, and pancreatic cancers; glioblastoma; and several leukemias. MSI1 and MSI2 bind and regulate the mRNA stability and translation of proteins operating in essential oncogenic signaling pathways, including NUMB/Notch, PTEN/ mTOR, TGFβ/SMAD3, MYC, cMET, and others. On the basis of these activities, MSI proteins maintain cancer stem cell populations and regulate cancer invasion, metastasis, and development of more aggressive cancer phenotypes, including drug resistance. Although RBPs are viewed as difficult therapeutic targets, initial efforts to develop MSI-specific inhibitors are promising, and RNA interference-based approaches to inhibiting these proteins have had promising outcomes in preclinical studies. In the interim, understanding the function of these translational regulators may yield insight into the relationship between mRNA expression and protein expression in tumors, guiding tumor-profiling analysis. This review provides a current overview of Musashi as a cancer driver and novel therapeutic target.
AB - Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in Drosophila, the human Musashi proteins were initially linked to control of maintenance of hematopoietic stem cells, then stem cell compartments for additional cell types. More recently, the Musashi proteins were found to be overexpressed and prognostic of outcome in numerous cancer types, including colorectal, lung, and pancreatic cancers; glioblastoma; and several leukemias. MSI1 and MSI2 bind and regulate the mRNA stability and translation of proteins operating in essential oncogenic signaling pathways, including NUMB/Notch, PTEN/ mTOR, TGFβ/SMAD3, MYC, cMET, and others. On the basis of these activities, MSI proteins maintain cancer stem cell populations and regulate cancer invasion, metastasis, and development of more aggressive cancer phenotypes, including drug resistance. Although RBPs are viewed as difficult therapeutic targets, initial efforts to develop MSI-specific inhibitors are promising, and RNA interference-based approaches to inhibiting these proteins have had promising outcomes in preclinical studies. In the interim, understanding the function of these translational regulators may yield insight into the relationship between mRNA expression and protein expression in tumors, guiding tumor-profiling analysis. This review provides a current overview of Musashi as a cancer driver and novel therapeutic target.
UR - http://www.scopus.com/inward/record.url?scp=85018454521&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018454521&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-16-2728
DO - 10.1158/1078-0432.CCR-16-2728
M3 - Review article
C2 - 28143872
AN - SCOPUS:85018454521
VL - 23
SP - 2143
EP - 2153
JO - Clinical Cancer Research
JF - Clinical Cancer Research
SN - 1078-0432
IS - 9
ER -