TY - JOUR
T1 - Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway
AU - Yan, Zhen
AU - Surmeier, D. James
PY - 1996/4/15
Y1 - 1996/4/15
N2 - The signaling pathways mediating the muscarinic modulation of Ca2+ currents in neostriatal cholinergic interneurons were studied by combined patch-clamp recording and single-cell reverse transcription-PCR. Cholinergic interneurons were identified by the presence of choline acetyltransferase mRNA. These neurons expressed Q-, N-, L-, P-, and R-type Ca2+ currents and the mRNA for the α1 subunits believed to form the channels underlying these currents (classes A, B, C, D, and E). Of the interneurons tested, nearly all expressed M2-class (m2, m4) receptor mRNAs, whereas m1 receptor mRNA was found in only a subset (∼30%) of the sample. The muscarinic agonist oxotremorine methiodide produced a dose-dependent reduction of N- and P-type Ba2+ currents through Ca2+ channels that was antagonized by atropine. N-ethylmaleimide eliminated the modulation, as did preincubation with pertussis toxin. The onset and offset of the modulation were rapid and dosedependent. The modulation was also attenuated by strong depolarizing prepulses and was not observed in cell-attached membrane patches. Taken together, our results suggest that activation of M2-class muscarinic receptors in cholinergic interneurons reduces N- and P-type Ca2+ currents through a membrane-delimited pathway using a Gi/o-class G-protein. This signaling pathway provides a cellular mechanism for hetero- and homosynaptic control of interneuronal activity and acetylcholine release in the striatum.
AB - The signaling pathways mediating the muscarinic modulation of Ca2+ currents in neostriatal cholinergic interneurons were studied by combined patch-clamp recording and single-cell reverse transcription-PCR. Cholinergic interneurons were identified by the presence of choline acetyltransferase mRNA. These neurons expressed Q-, N-, L-, P-, and R-type Ca2+ currents and the mRNA for the α1 subunits believed to form the channels underlying these currents (classes A, B, C, D, and E). Of the interneurons tested, nearly all expressed M2-class (m2, m4) receptor mRNAs, whereas m1 receptor mRNA was found in only a subset (∼30%) of the sample. The muscarinic agonist oxotremorine methiodide produced a dose-dependent reduction of N- and P-type Ba2+ currents through Ca2+ channels that was antagonized by atropine. N-ethylmaleimide eliminated the modulation, as did preincubation with pertussis toxin. The onset and offset of the modulation were rapid and dosedependent. The modulation was also attenuated by strong depolarizing prepulses and was not observed in cell-attached membrane patches. Taken together, our results suggest that activation of M2-class muscarinic receptors in cholinergic interneurons reduces N- and P-type Ca2+ currents through a membrane-delimited pathway using a Gi/o-class G-protein. This signaling pathway provides a cellular mechanism for hetero- and homosynaptic control of interneuronal activity and acetylcholine release in the striatum.
KW - Acetylcholine
KW - Calcium current
KW - Cholinergic interneuron
KW - Muscarinic receptor
KW - Neostriatum
KW - Neuromodulation
KW - PCR
KW - Patch clamp
UR - http://www.scopus.com/inward/record.url?scp=0029881929&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029881929&partnerID=8YFLogxK
U2 - 10.1523/jneurosci.16-08-02592.1996
DO - 10.1523/jneurosci.16-08-02592.1996
M3 - Article
C2 - 8786435
AN - SCOPUS:0029881929
VL - 16
SP - 2592
EP - 2604
JO - Journal of Neuroscience
JF - Journal of Neuroscience
SN - 0270-6474
IS - 8
ER -