Musicians have fine-tuned neural distinction of speech syllables

A. Parbery-Clark, A. Tierney, D. L. Strait, N. Kraus*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

73 Scopus citations

Abstract

One of the benefits musicians derive from their training is an increased ability to detect small differences between sounds. Here, we asked whether musicians' experience discriminating sounds on the basis of small acoustic differences confers advantages in the subcortical differentiation of closely related speech sounds (e.g., /ba/ and /ga/), distinguishable only by their harmonic spectra (i.e., their second formant trajectories). Although the second formant is particularly important for distinguishing stop consonants, auditory brainstem neurons do not phase-lock to its frequency range (above 1000. Hz). Instead, brainstem neurons convert this high-frequency content into neural response timing differences. As such, speech tokens with higher formant frequencies elicit earlier brainstem responses than those with lower formant frequencies. By measuring the degree to which subcortical response timing differs to the speech syllables /ba/, /da/, and /ga/ in adult musicians and nonmusicians, we reveal that musicians demonstrate enhanced subcortical discrimination of closely related speech sounds. Furthermore, the extent of subcortical consonant discrimination correlates with speech-in-noise perception. Taken together, these findings show a musician enhancement for the neural processing of speech and reveal a biological mechanism contributing to musicians' enhanced speech perception in noise.

Original languageEnglish (US)
Pages (from-to)111-119
Number of pages9
JournalNeuroscience
Volume219
DOIs
StatePublished - Sep 6 2012

Keywords

  • Auditory
  • Brainstem
  • Musical training
  • Speech discrimination
  • Speech in noise

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Musicians have fine-tuned neural distinction of speech syllables'. Together they form a unique fingerprint.

Cite this