Mutations and protein interaction landscape reveal key cellular events perturbed in upper motor neurons with HSP and PLS

Oge Gozutok, Benjamin Ryan Helmold, P. Hande Ozdinler*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are rare motor neuron diseases, which affect mostly the upper motor neurons (UMNs) in patients. The UMNs display early vulnerability and progressive degeneration, while other cortical neurons mostly remain functional. Identification of numerous mutations either directly linked or associated with HSP and PLS begins to reveal the genetic component of UMN diseases. Since each of these mutations are identified on genes that code for a protein, and because cellular functions mostly depend on proteinprotein interactions, we hypothesized that the mutations detected in patients and the alterations in protein interaction domains would hold the key to unravel the underlying causes of their vulnerability. In an effort to bring a mechanistic insight, we utilized computational analyses to identify interaction partners of proteins and developed the protein-protein interaction landscape with respect to HSP and PLS. Protein-protein interaction domains, upstream regulators and canonical pathways begin to highlight key cellular events. Here we report that proteins involved in maintaining lipid homeostasis and cytoarchitectural dynamics and their interactions are of great importance for UMN health and stability. Their perturbation may result in neuronal vulnerability, and thus maintaining their balance could offer therapeutic interventions.

Original languageEnglish (US)
Article number578
JournalBrain Sciences
Volume11
Issue number5
DOIs
StatePublished - May 2021

Keywords

  • Growth factors
  • Interaction domain
  • Lipid homeostasis
  • Protein landscape
  • Upper motor neurons
  • Upstream regulator

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Mutations and protein interaction landscape reveal key cellular events perturbed in upper motor neurons with HSP and PLS'. Together they form a unique fingerprint.

Cite this