TY - GEN
T1 - Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis
AU - Tkach, D. C.
AU - Lipschutz, R. D.
AU - Finucane, S. B.
AU - Hargrove, L. J.
PY - 2013/12/31
Y1 - 2013/12/31
N2 - Technological advances have enabled clinical use of powered foot-ankle prostheses. Although the fundamental purposes of such devices are to restore natural gait and reduce energy expenditure by amputees during walking, these powered prostheses enable further restoration of ankle function through possible voluntary control of the powered joints. Such control would greatly assist amputees in daily tasks such as reaching, dressing, or simple limb repositioning for comfort. A myoelectric interface between an amputee and the powered foot-ankle prostheses may provide the required control signals for accurate control of multiple degrees of freedom of the ankle joint. Using a pattern recognition classifier we compared the error rates of predicting up to 7 different ankle-joint movements using electromyographic (EMG) signals collected from below-knee, as well as below-knee combined with above-knee muscles of 12 trans-tibial amputee and 5 control subjects. Our findings suggest very accurate (5.3±0.5%SE mean error) real-time control of a 1 degree of freedom (DOF) of ankle joint can be achieved by amputees using EMG from as few as 4 below-knee muscles. Reliable control (9.8±0.7%SE mean error) of 3 DOFs can be achieved using EMG from 8 below-knee and above-knee muscles.
AB - Technological advances have enabled clinical use of powered foot-ankle prostheses. Although the fundamental purposes of such devices are to restore natural gait and reduce energy expenditure by amputees during walking, these powered prostheses enable further restoration of ankle function through possible voluntary control of the powered joints. Such control would greatly assist amputees in daily tasks such as reaching, dressing, or simple limb repositioning for comfort. A myoelectric interface between an amputee and the powered foot-ankle prostheses may provide the required control signals for accurate control of multiple degrees of freedom of the ankle joint. Using a pattern recognition classifier we compared the error rates of predicting up to 7 different ankle-joint movements using electromyographic (EMG) signals collected from below-knee, as well as below-knee combined with above-knee muscles of 12 trans-tibial amputee and 5 control subjects. Our findings suggest very accurate (5.3±0.5%SE mean error) real-time control of a 1 degree of freedom (DOF) of ankle joint can be achieved by amputees using EMG from as few as 4 below-knee muscles. Reliable control (9.8±0.7%SE mean error) of 3 DOFs can be achieved using EMG from 8 below-knee and above-knee muscles.
UR - http://www.scopus.com/inward/record.url?scp=84891045754&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84891045754&partnerID=8YFLogxK
U2 - 10.1109/ICORR.2013.6650499
DO - 10.1109/ICORR.2013.6650499
M3 - Conference contribution
C2 - 24187314
AN - SCOPUS:84891045754
SN - 9781467360241
T3 - IEEE International Conference on Rehabilitation Robotics
BT - 2013 IEEE 13th International Conference on Rehabilitation Robotics, ICORR 2013
T2 - 2013 IEEE 13th International Conference on Rehabilitation Robotics, ICORR 2013
Y2 - 24 June 2013 through 26 June 2013
ER -