Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis

D. C. Tkach, R. D. Lipschutz, S. B. Finucane, L. J. Hargrove

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

Technological advances have enabled clinical use of powered foot-ankle prostheses. Although the fundamental purposes of such devices are to restore natural gait and reduce energy expenditure by amputees during walking, these powered prostheses enable further restoration of ankle function through possible voluntary control of the powered joints. Such control would greatly assist amputees in daily tasks such as reaching, dressing, or simple limb repositioning for comfort. A myoelectric interface between an amputee and the powered foot-ankle prostheses may provide the required control signals for accurate control of multiple degrees of freedom of the ankle joint. Using a pattern recognition classifier we compared the error rates of predicting up to 7 different ankle-joint movements using electromyographic (EMG) signals collected from below-knee, as well as below-knee combined with above-knee muscles of 12 trans-tibial amputee and 5 control subjects. Our findings suggest very accurate (5.3±0.5%SE mean error) real-time control of a 1 degree of freedom (DOF) of ankle joint can be achieved by amputees using EMG from as few as 4 below-knee muscles. Reliable control (9.8±0.7%SE mean error) of 3 DOFs can be achieved using EMG from 8 below-knee and above-knee muscles.

Original languageEnglish (US)
Title of host publication2013 IEEE 13th International Conference on Rehabilitation Robotics, ICORR 2013
DOIs
StatePublished - Dec 31 2013
Event2013 IEEE 13th International Conference on Rehabilitation Robotics, ICORR 2013 - Seattle, WA, United States
Duration: Jun 24 2013Jun 26 2013

Publication series

NameIEEE International Conference on Rehabilitation Robotics
ISSN (Print)1945-7898
ISSN (Electronic)1945-7901

Other

Other2013 IEEE 13th International Conference on Rehabilitation Robotics, ICORR 2013
CountryUnited States
CitySeattle, WA
Period6/24/136/26/13

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Rehabilitation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis'. Together they form a unique fingerprint.

Cite this