N-glycosylation Triggers a Dual Selection Pressure in Eukaryotic Secretory Proteins

Máximo Lopez Medus, Gabriela E. Gomez, Lucía F. Zacchi, Paula M. Couto, Carlos A. Labriola, María S. Labanda, Rodrigo Corti Bielsa, Eugenia M. Clérico, Benjamin L. Schulz, Julio J. Caramelo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Nearly one third of the eukaryotic proteome traverses the secretory pathway and most of these proteins are N-glycosylated in the lumen of the endoplasmic reticulum. N-glycans fulfill multiple structural and biological functions, and are crucial for productive folding of many glycoproteins. N-glycosylation involves the attachment of an oligosaccharide to selected asparagine residues in the sequence N-X-S/T (X P), a motif known as an N-glycosylation'sequon'. Mutations that create novel sequons can cause disease due to the destabilizing effect of a bulky N-glycan. Thus, an analogous process must have occurred during evolution, whenever ancestrally cytosolic proteins were recruited to the secretory pathway. Here, we show that during evolution N-glycosylation triggered a dual selection pressure on secretory pathway proteins: while sequons were positively selected in solvent exposed regions, they were almost completely eliminated from buried sites. This process is one of the sharpest evolutionary signatures of secretory pathway proteins, and was therefore critical for the evolution of an efficient secretory pathway.

Original languageEnglish (US)
Article number8788
JournalScientific reports
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'N-glycosylation Triggers a Dual Selection Pressure in Eukaryotic Secretory Proteins'. Together they form a unique fingerprint.

Cite this